The dynamic analysis model of axial piston pump was established; both the kinematics and dynamics simulation analysis were conducted by virtual prototyping approach. The displacement, velocity, acceleration and stress curves of the piston under different working conditions were investigated. In addition, a ball-in-socket contact model was established, and the effects of hydraulic pressure, piston radius and radial clearance on normal displacement, contact radius, maximum contact pressure, normal contact stiffness and tangential contact stiffness were analyzed comprehensively. The results indicate that the normal displacement, maximum contact pressure, contact radius, normal contact stiffness and tangential contact stiffness can be improved by enlarging the piston radius and decreasing the radial clearance.
The spherical pump is a totally new hydraulic concept, with spherical piston and hydrostatic bearing, in order to eliminate the direct contact between the piston and cylinder cover. In this paper, the governing Reynolds equation under spherical coordinates has been solved and the hydrostatic bearing characteristics are systematically investigated. The operating sensitivities of the proposed spherical hydrostatic bearing, with respect to the piston radius, film beginning angle, film ending angle, film thickness, and temperature, are studied. The load carrying capacity, pressure drop coefficient, stiffness variation of the lubricating films, leakage properties, and leakage flow rates are comprehensively discussed. The related findings provide a fundamental basis for designing the high-efficient spherical pump under multiple operating conditions. Besides, these related results and mechanisms can also be utilized to design and improve other kinds of annular orifice damper spherical hydraulic bearing systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.