Sulfonamide derivatives have been used in pharmaceutics for decades. Here we report a new approach to release sulfonamides efficiently using a bioorthogonal reaction of sulfonyl sydnonimines and dibenzoazacyclooctyne (DIBAC). The second-order rate constant of the cycloaddition reaction can be up to 0.62 M−1 s−1, and the reactants are highly stable under physiological conditions. Most significantly, we also discovered the mutual orthogonality between the sydnonimine–DIBAC and benzonorbornadiene–tetrazine cycloaddition pairs, which can be used for selective and simultaneous liberation of sulfonamide and primary amine drugs.
Halogen substituents increase sydnone cycloaddition reactivities substantially. Fluoro-sydnones are superior to bromo- and chloro-sydnones, and can achieve extremely high second-order rate constants with strained alkynes. Computational studies have revealed the fluorine substituent increases the reactivity of sydnone mainly by lowering its distortion energy.
The catalyst-free sp(3) C-H functionalization of 2-alkylazaarenes has been achieved in the reaction with (thio)coumarin-3-carboxylic acids. Followed by a tandem decarboxylation, this method provides facile synthesis of biologically important azaarene-substituted 3,4-dihydro(thio)coumarins in a single step in high yields.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.