Smart antenna system has been studied extensively for the fifth generation of wireless communication systems, because it has made a system better performance of higher capacity and coverage as well as of power-saving. The present paper introduces a design of planar microstrip patch antenna array for a smart mobile system operating at 28 GHz. The present smart antenna has an adaptive radiation pattern that adjusts its main beam automatically to the desired direction by following the signal environment. This is based on the processing of an algorithm called the Least Mean Square (LMS) resulting in a change in the magnitude and phase of the feeding current for each element in the antenna array. From the obtained results, the main beam can be steered 180 degrees in the phi (azimuth) plane at a constant theta (elevation) angle. The planar antenna array was designed and simulated using CST Microwave Studio and MATLAB software that is used to find the required exciting current for each element. It is found that the antenna bandwidth is greater than 1 GHz while its gain is about 21 dB.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.