The future of healthcare may look completely different from the current clinic-center services. Rapidly growing and developing technologies are expected to change clinics throughout the world. However, the healthcare delivered to impaired patients, such as elderly and disabled people, possibly still requires hands-on human expertise. The aim of this study is to propose a predictive model that pre-diagnose illnesses by analyzing symptoms that are interactively taken from patients via several hand gestures during a period of time. This is particularly helpful in assisting clinicians and doctors to gain better understanding and make more accurate decisions about future plans for their patients’ situations. The hand gestures are detected, the time of the gesture is recorded and then they are associated to their designated symptoms. This information is captured in the form of provenance graphs constructed based on the W3C PROV data model. The provenance graph is analyzed by extracting several network metrics and then supervised machine-learning algorithms are used to build a predictive model. The model is used to predict diseases from the symptoms with a maximum accuracy of 84.5%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.