The spontaneous emission of submicronic particles from a surface of highradioactive dielectrics has been under the experimental study for the first time. Formation of disordered regions due to intrinsic irradiation and electron sputtering of surface clusters processes turned out to be responsible for the phenomenon under observation.
The paper is devoted to the theoretical study of elementary permeable objects percolation and its application to real physical objects. Spheres and isotropic oriented capped sticks were chosen as elementary geometrical objects for percolation simulation, physically adequate for radiation defects behaviour description in brittle dielectrics, particularly in the so-called Lava-like Fuel Containing Materials (LFCM), where it effects their mechanical steadiness. LFCMs is high-radioactive glass, which was formed during active stage of well-known heavy nuclear accident, that occurred at Chornobyl nuclear facility in 1986. Physical processes taking place in the materials are of great practical interest. Furthermore, when applying percolation models to LFCM objects, an approximate behaviour forecast can be created. From the results of simulation, it appears that physical properties of the LFCM should drastically change within in the period of 2015÷2045 calendar years, depending on variations in nuclear fuel content.
The paper is devoted to the theoretical study of Coulomb explosion in silicate glasses with low ionization potential under internal alpha-irradiation. The phenomenon was studied in the way of computer simulation, namely by the molecular dynamics (MD) method; parameters of the so-called lavalike fuel-containing materials (LFCM), were chosen as input parameters for the model due to its practical importance. LFCM are high-radioactive glasses, which were formed during an active stage of a well known heavy nuclear accident, occurred on Chornobyl NPP in 1986. Computer simulation revealed that Coulomb explosion really may occur in the LFCMs and leads to additional radiation damages under internal alpha-irradiation. The total quantity of atomic displacements produced in the way of Coulomb explosion from each alpha-particle track is 40000 to 80000, which exceeds radiation damages from alpha-particle and heavy recoil nuclei altogether (about 3500) more than one order.
The paper is devoted to the experimental study of electric transport in a very special substance, namely alkali-earth glasses containing the noticeable quantity (up to 10%) of dissolved irradiated uranium nuclear fuel and its fission and daughter products as well. Such a high-radioactive product was formed at the active stage of the well-known heavy nuclear accident which occurred on Chornobyl NPP facility in 1986. The soft matter behaviour was established by measuring the temperature dependence of viscosity, where the glassy properties had been identified unambiguously. Static electric conductivity temperature dependence was measured for 80 K-1000 K temperature interval. The transport processes connected with thermal activation of electrons, hopping conductivity in the band tails and variable range hopping (VRH) were identified. The band structure of such glasses manifests the energy gap of 1.8-2.0 eV width, which formed due to long-range order and wide band tails connected with horizontal disorder, which, in its turn, may originate from numerous traps and internal radiation damages. The latter makes it possible to identify the investigated matter as devitrified glass. The distinguishing feature of such devitrified glasses is low ionization energy for electrons, providing a high spatial density of electron excitations in α -particle tracks, which leads to such a collective phenomena as the so-called Coulomb explosion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.