The high-energy oscillating electric current pulse (ECP) technology was introduced to relieve the residual stresses in the small AISI 1045 steel specimens treated by the pulsed-laser surface irradiation. The high-energy oscillating ECP stress relief experiments were conducted to study the effectiveness of the high-energy oscillating ECP technology. In addition, the electroplasticity framework was developed based on the thermal activation theory to reveal the mechanism of the high-energy oscillating ECP stress relief. The results show that the high-energy oscillating ECP stress relief has good effects on eliminating the residual stress. Furthermore, the residual stress relieving mechanism of the high-energy oscillating ECP stress relief can be attributed to the electric softening effect and the dynamic stress effect. The findings confirm that the significant effects of high-energy oscillating ECP on metal plasticity and provide a basis to understand the underlying mechanism of the high-energy oscillating ECP stress relief.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.