Oriental fruit fly, Bactrocera dorsalis (Hendel), is a highly polyphagous fruit fly which, in the last 15 years, has invaded (with or without establishment) Africa, Europe and North America. As a direct result of these invasions, there is increasing research interest in the invasion history and spread patterns of this fly. A statement being repeatedly used in the B. dorsalis invasion literature is that the species was first identified from Taiwan in 1912 and that it subsequently spread through South‐East and South Asia during the 20th century. This assumption is incorrect and stems from: (a) an incomplete knowledge of B. dorsalis taxonomic history; and (b) a confounding of first taxonomic record with first invasion record. Rather than being first detected in Taiwan in 1912, the first record of oriental fruit fly was from “East India” (India orientali) under the synonymous name of Musca ferruginea by Fabricius in 1794, and in the 1910s, it was known not only from Taiwan, but widely across tropical Asia with records from India, Burma, Bengal, Sri Lanka (as Ceylon), Singapore and Indonesia (multiple islands). The taxonomic literature is very clear that oriental fruit fly has not invaded the rest of Asia from Taiwan since 1912, and this error should not continue to be repeated in the literature.
The relationship between crop richness and predator-prey interactions as they relate to pest-natural enemy systems is a very important topic in ecology and greatly affects biological control services. The effects of crop arrangement on predator-prey interactions have received much attention as the basis for pest population management. To explore the internal mechanisms and factors driving the relationship between crop richness and pest population management, we designed an experimental model system of a microlandscape that included 50 plots and five treatments. Each treatment had 10 repetitions in each year from 2007 to 2010. The results showed that the biomass of pests and their natural enemies increased with increasing crop biomass and decreased with decreasing crop biomass; however, the effects of plant biomass on the pest and natural enemy biomass were not significant. The relationship between adjacent trophic levels was significant (such as pests and their natural enemies or crops and pests), whereas non-adjacent trophic levels (crops and natural enemies) did not significantly interact with each other. The ratio of natural enemy/pest biomass was the highest in the areas of four crop species that had the best biological control service. Having either low or high crop species richness did not enhance the pest population management service and lead to loss of biological control. Although the resource concentration hypothesis was not well supported by our results, high crop species richness could suppress the pest population, indicating that crop species richness could enhance biological control services. These results could be applied in habitat management aimed at biological control, provide the theoretical basis for agricultural landscape design, and also suggest new methods for integrated pest management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.