The flavonoid baicalin has been reported to possess potent anti-inflammatory activities by suppressing inflammatory signaling pathways. However, whether baicalin can suppress the activation of NOD-like receptor (NLR) family, pyrin containing domain 3 (NLRP3) inflammasome in macrophages is largely unknown. Here, we showed that baicalin treatment dose-dependently inhibited adenosine triphosphate (ATP) or nigericin-induced NLRP3 inflammasome activation, as revealed by the decreased release of mature interleukin (IL)-1β, active caspase-1p10, and high-mobility group box-1 protein from lipopolysaccharide (LPS)-primed bone marrow-derived macrophages. The formation of ASC specks, a critical marker of NLRP3 inflammasome assembly, was robustly inhibited by baicalin in the macrophages upon ATP or nigericin stimulation. All these inhibitory effects of baicalin could be partly reversed by MDL12330A or H89, both of which are inhibitors of the protein kinase A (PKA) signaling pathway. Consistent with this, baicalin strongly enhanced PKA-mediated phosphorylation of NLRP3, which has been suggested to prevent ASC recruitment into the inflammasome. Of note, the PKA inhibitor H89 could block baicalin-induced NLRP3 phosphorylation on PKA-specific sites, further supporting PKA’s role in this process. In addition, we showed that when administered pre and post exposure to Escherichia coli infection baicalin treatment significantly improved mouse survival in bacterial sepsis. Baicalin administration also significantly reduced IL-1β levels in the sera of bacterial infected mice. Altogether, our results revealed that baicalin inhibited NLRP3 inflammasome activation at least partly through augmenting PKA signaling, highlighting its therapeutic potential for the treatment of NLRP3-related inflammatory diseases.
Pepper, a daily-used seasoning for promoting appetite, is widely used in folk medicine for treating gastrointestinal diseases. Piperine is the major alkaloid in pepper and possesses a wide range of pharmacological activities. However, the mechanism for linking metabolic and medicinal activities of piperine remains unknown. Here we report that piperine robustly boosts mTORC1 activity by recruiting more system L1 amino acid transporter (SLC7A5/SLC3A2) to the cell membrane, thus promoting amino acid metabolism. Piperine-induced increase of mTORC1 activity in resident peritoneal macrophages (pMΦs) is correlated with enhanced production of IL-6 and TNF-α upon LPS stimulation. Such an enhancement of cytokine production could be abrogated by inhibitors of the mTOR signaling pathway, indicating mTOR's action in this process. Moreover, piperine treatment protected resident pMΦs from bacterium-induced apoptosis and disappearance, and increased their bacterial phagocytic ability. Consequently, piperine administration conferred mice resistance against bacterial infection and even sepsis. Our data highlight that piperine has the capacity to metabolically reprogram peritoneal resident macrophages to fortify their innate functions against bacterial infection.
We study the mixed state entanglement in a holographic axion model. We find that the holographic entanglement entropy (HEE), mutual information (MI) and entanglement of purification (EoP) exhibit very distinct behaviors with system parameters. The HEE exhibits universal monotonic behavior with system parameters, while the behaviors of MI and EoP relate to the specific system parameters and configurations. We find that MI and EoP can characterize mixed state entanglement better than HEE since they are less affected by thermal effects. Specifically, the MI partly cancels out the thermal entropy contribution, while the holographic EoP is not dictated by the thermal entropy in any situation. Moreover, we argue that EoP is more suitable for describing mixed state entanglement than MI. Because the MI of large configurations are still dictated by the thermal entropy, while the EoP will never be controlled only by the thermal effects.
Cucurbitacin E (CucE), a triterpenoid isolated from Cucurbitaceae plants, has been shown to possess an anti-inflammatory or immunosuppressive activity in vitro and in vivo, yet the underlying mechanism has been incompletely understood. The aim of the present study was to explore its effect on cytokine expression and the underlying mechanism in human Jurkat T cells as a cellular model. The results showed that CucE significantly inhibited the production of interleukin-2, tumor necrosis factor-α, and interferon-γ in culture medium of cells treated with phorbol 12,13-dibutyrate (PDB) plus ionomycin (Ion). Furthermore, the mRNA levels of these cytokines in activated Jurkat T cells were also decreased upon CucE treatment, suggesting a potential modulatory effect on the critical signaling pathways for cytokine expression, including nuclear factor-κB (NF-κB) or mitogen-activated protein kinases (MAPKs). In support of its effect on the NF-κB signaling pathway, CucE decreased the phosphorylation levels of inhibitor of κB (IκB) and NF-κB/p65 in PDB + Ion-stimulated cells. Further supporting this, the nuclear translocation of NF-κB/p65 was significantly suppressed in response to PDB plus Ion stimulation in the presence of CucE. The phosphorylation of p38MAPK, c-Jun N-terminal kinase (JNK), and Erk1/2, however, was not decreased or slightly increased at some time points by CucE treatment. Collectively, these data suggest that CucE may exhibit immunosuppressive effect by attenuating critical cytokine expression through down-regulating the NF-κB signaling pathway.
We study the entanglement wedge cross-section (EWCS) in holographic massive gravity theory, in which a first and second-order phase transition can occur. We find that the mixed state entanglement measures, the EWCS and mutual information (MI) can characterize the phase transitions. The EWCS and MI show exactly the opposite behavior in the critical region, which suggests that the EWCS captures distinct degrees of freedom from that of the MI. More importantly, EWCS, MI and HEE all show the same scaling behavior in the critical region. We give an analytical understanding of this phenomenon. By comparing the quantum information behavior in the thermodynamic phase transition of holographic superconductors, we analyze the relationship and difference between them and provide two mechanisms of quantum information scaling behavior in the thermodynamic phase transition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.