Previous data have demonstrated that mesenchymal stem cells (MSCs) can exert immunomodulatory activity in vitro, in which of the process nearly all kinds of immune cell subsets are involved. However, there is still a paucity of information about whether and why MSCs inhibit the ongoing immune responses in vivo. Working in a murine splenocyte transfusion model across the major histocompatibility barrier (C57BL/6 → BALB/c, H2 b → H2 d ), we have found that MSC coinfusion prolongs the mean survival time (MST) of the recipient mice in a dose-dependent manner and reduces graft-versus-host-associated histopathology in comparison to the allosplenocyte transfusion controls. In vivo eGFP tracing with polymerase chain reaction analysis revealed that grafted MSCs could migrate and settle into the lungs, spleen, liver, intestine, and skin shortly after administration. Further investigations into the functional characteristics of intrasplenic lymphocytes showed that their proliferation and cytotoxic activity against P815 cells (H2 d ) were significantly restrained by MSC cotransfer. FACS analysis demonstrated that MSC infusion not only increased the proportion of CD4 + subset but also decreased that of CD8 + cells at the belated observation points, resulting in the increase of the ratio of CD4 + /CD8 + cells. Also, in contrast to the slight increase of the proportion of CD4 + CD25 + T regulatory cells (Tregs) in MSC cotransfer mice, the ratio of Tregs/CD8 + cells was dramatically elevated. Furthermore, RT-PCR analysis on the cytokine array of IL-2, IL-4, IL-12, TNF-α, and TGF-β in recipient splenocytes implied the Th1 to Th2 polarization. Therefore, it is deducible that alteration in the proportions of different T-lymphocyte subsets may be one of the main mechanisms by which grafted MSCs suppress the ongoing immune responses in vivo. The study here might provide some new clues for the design of therapeutic approaches for MSC transplantation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.