The orientation, distribution, and contact point density of BF (basalt fiber) in the concrete matrix play significant roles in the mechanical properties of BF concrete, but represent a weak point in current research. It is meaningful to study the morphological characteristics of BF in concrete. In this study, the transparent model test and joint blocking method were innovatively adopted to investigate the correlation of dosage with the BF morphological parameters and concrete mechanical properties. A focus on a BF dosage of 0–7.5 kg/m3 and the contribution index of fibers Cf was defined. Furthermore, NMR and CT techniques were used to observe the changes in the microstructure of BF concrete. The experimental results show that the BF contribution index Cf reaches the largest value when the BF content is around 3 kg/m3, approximately 2.7; in this case, the mechanical properties of BF concrete were also optimal, and the Cf was only 2.34 when the BF content was 7.5 kg/m3. NMR and CT test results show that there is a strong correlation between the BF morphological parameters and the distribution of pore structure in the concrete matrix. The overlapping contact of BF clusters led to the penetration of pores, which led the macro-pore proportion to increase dramatically. The increase in the macro-pore proportion is the main reason for the deterioration in concrete performance. In addition, these macro-pores may have adverse effects on the chloride ion permeability of BF concrete.
Considering the factors affecting the surrounding rock stability of gob-side entry retaining, the applicability of a large-diameter, concrete-filled steel tube roadside support body in a top-coal caving fully mechanized face is discussed, and a new approach to gob-side entry retaining is proposed in this study. The mechanical model of the surrounding rock structure of gob-side entry retaining in a top-coal caving fully mechanized face was established, the critical state of column–roof contact shear slip instability was clarified through Prandtl foundation failure theory, and the deformation mechanism of the surrounding rock of the retained roadway was analyzed through numerical simulation. The results indicated that the range of the tensile stress zone and extreme tensile stress of the roof between columns are closely related to the spacing of columns, which is the key factor influencing the deformation of the retained roadway. In addition, besides uncontrollable factors, the stability of the contact interface between the roof and columns is directly related to the area of the contact interface between the concrete-filled steel tubes and the roof, and the size of the critical contact area is directly related to the properties of top-coal mass. Finally, a field test was carried out in 91–101 working panels in the Wang-Zhuang Coal Mine; the maximum convergence of the roof and floor was 510 mm, and the area of the retained roadway section reached 12.9 m2, which is within a reasonable range.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.