The first results obtained by the DAMA/LIBRA–phase2 experiment are presented. The data have been collected over six independent annual cycles corresponding to a total exposure of 1.13 ton × year, deep underground at the Gran Sasso National Laboratory. The DAMA/LIBRA–phase2 apparatus, about 250 kg highly radio-pure NaI(Tl), profits from a second generation high quantum efficiency photomultipliers and of new electronics with respect to DAMA/LIBRA–phase1. The improved experimental configuration has also allowed to lower the software energy threshold. The DAMA/LIBRA–phase2 data confirm the evidence of a signal that meets all the requirements of the model independent Dark Matter annual modulation signature, at 9.5 σ C.L. in the energy region (1–6) keV. In the energy region between 2 and 6 keV, where data are also available from DAMA/NaI and DAMA/LIBRA–phase1, the achieved C.L. for the full exposure (2.46 ton × year) is 12.9 σ .
Models describing the light response of photosynthetic electron transport rate (ETR) are routinely used to determine how light absorption influences energy, reducing power and yields of primary productivity; however, no single model is currently able to provide insight into the fundamental processes that implicitly govern the variability of light absorption. Here we present development and application of a new mechanistic model of ETR for photosystem II based on the light harvesting (absorption and transfer to the core 'reaction centres') characteristics of photosynthetic pigment molecules. Within this model a series of equations are used to describe novel biophysical and biochemical characteristics of photosynthetic pigment molecules and in turn light harvesting; specifically, the eigen-absorption cross-section and the minimum average lifetime of photosynthetic pigment molecules in the excited state, which describe the ability of light absorption of photosynthetic pigment molecules and retention time of excitons in the excited state but are difficult to be measured directly. We applied this model to a series of previously collected fluorescence data and demonstrated that our model described well the light response curves of ETR, regardless of whether dynamic down-regulation of PSII occurs, for a range of photosynthetic organisms (Abies alba, Picea abies, Pinus mugo and Emiliania huxleyi). Inherent estimated parameters (e.g. maximum ETR and the saturation irradiance) by our model are in very close agreement with the measured data. Overall, our mechanistic model potentially provides novel insights into the regulation of ETR by light harvesting properties as well as dynamical down-regulation of PSII.
Light intensity (I) is the most dynamic and significant environmental variable affecting photosynthesis (A n), stomatal conductance (g s), transpiration (T r), and water-use efficiency (WUE). Currently, studies characterizing leaf-scale WUE-I responses are rare and key questions have not been answered. In particular, (1) What shape does the response function take? (2) Are there maximum intrinsic (WUE i ; WUE i−max) and instantaneous WUE (WUE inst ; WUE inst−max) at the corresponding saturation irradiances (I i−sat and I inst−sat)? This study developed WUE i-I and WUE inst-I models sharing the same non-asymptotic function with previously published A n-I and g s-I models. Observation-modeling intercomparison was conducted for field-grown plants of soybean (C 3) and grain amaranth (C 4) to assess the robustness of our models versus the non-rectangular hyperbola models (NH models). Both types of models can reproduce WUE-I curves well over light-limited range. However, at light-saturated range, NH models overestimated WUE i−max and WUE inst−max and cannot return I i−sat and I inst−sat due to its asymptotic function. Moreover, NH models cannot describe the downregulation of WUE induced by high light, on which our models described well. The results showed that WUE i and WUE inst increased rapidly within low range of I, driven by uncoupled photosynthesis and stomatal responsiveness. Initial response rapidity of WUE i was higher than WUE inst because the greatest increase of A n and T r occurred at low g s. C 4 species showed higher WUE i−max and WUE inst−max than C 3 species-at similar I i−sat and I inst−sat. Our intercomparison highlighted larger discrepancy between WUE i-I and WUE inst-I responses in C 3 than C 4 species, quantitatively characterizing an
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.