Vibronic coherence is observed between two sets of pigments in the cryptophyte light-harvesting protein PC645, whose absorptions are at either end of the spectrum. 2D spectra show specific patterns that are rationalized by the existence of a vibrational resonance linking the pigments and partially delocalizing the excitation. This leads to a modification of the donor-acceptor spectral overlap and a calculable enhancement in the rate of energy transfer. This directed energy transfer between terminal pigments is a design principle likely to be used by cryptophytes.
Molecular excitons are used in a variety of applications including light harvesting, optoelectronics, and nanoscale computing. Controlled aggregation via covalent attachment of dyes to DNA templates is a promising aggregate assembly technique that enables the design of extended dye networks. However, there are few studies of exciton dynamics in DNA-templated dye aggregates. We report time-resolved excited-state dynamics measurements of two cyanine-based dye aggregates, a J-like dimer and an H-like tetramer, formed through DNA-templating of covalently attached dyes. Time-resolved fluorescence and transient absorption indicate that nonradiative decay, in the form of internal conversion, dominates the aggregate ground state recovery dynamics, with singlet exciton lifetimes on the order of tens of picoseconds for the aggregates versus nanoseconds for the monomer. These results highlight the importance of circumventing nonradiative decay pathways in the future design of DNA-templated dye aggregates.
The direct, site-selective alkylation of unactivated C(sp3)–H bonds in organic substrates is a long-standing goal in synthetic chemistry. General approaches to the activation of strong C–H bonds include radical-mediated processes involving highly reactive intermediates, such as heteroatom-centered radicals. Herein, we describe a catalytic, intermolecular C–H alkylation that circumvents such reactive species via a new elementary step for C–H cleavage involving multisite-proton-coupled electron transfer (multisite-PCET). Mechanistic studies indicate that the reaction is catalyzed by a noncovalent complex formed between an iridium(III) photocatalyst and a monobasic phosphate base. The C–H alkylation proceeds efficiently using diverse hydrocarbons and complex molecules as the limiting reagent and represents a new approach to the catalytic functionalization of unactivated C(sp3)–H bonds.
We report quantum chemical calculations using multireference perturbation theory (MRPT) with the density matrix renormalization group (DMRG) plus photothermal deflection spectroscopy measurements to investigate the manifold of carotenoid excited states and establish their energies relative to the bright state (S 2 ) as a function of nuclear reorganization. We conclude that the primary photophysics and function of carotenoids are determined by interplay of only the bright (S 2 ) and lowest-energy dark (S 1 ) states. The lowest-lying dark state, far from being energetically distinguishable from the lowest-lying bright state along the entire excited-state nuclear reorganization pathway, is instead computed to be either the second or first excited state depending on what equilibrium geometry is considered. This result suggests that, rather than there being a dark intermediate excited state bridging a non-negligible energy gap from the lowestlying dark state to the lowest-lying bright state, there is in fact no appreciable energy gap to bridge following photoexcitation. Instead, excited-state nuclear reorganization constitutes the bridge from S 2 to S 1 , in the sense that these two states attain energetic degeneracy along this pathway.
The origin and role of oscillatory features detected in recent femtosecond spectroscopy experiments of photosynthetic complexes remain elusive. A key hypothesis underneath of these observations relies on electronic-vibrational resonance, where vibrational levels of an acceptor chromophore match the donor-acceptor electronic gap, accelerating the downhill energy transfer. Here we identify and detune such vibronic resonances using a high magnetic field that exclusively shifts molecular exciton states. We implemented ultrafast pump-probe spectroscopy into a specialized 25 T magnetic field facility and studied the light-harvesting complex PC645 from a cryptophyte algae where strongly coupled chromophores form molecular exciton states. We detected a change in high-frequency coherent oscillations when the field was engaged. Quantum chemical calculations coupled with a vibronic model explain the experiment as a magnetic field-induced shift of the exciton states, which in turn affects the electronic-vibrational resonance between pigments within the protein. Our results demonstrate the delicate sensitivity of interpigment coherent oscillations of vibronic origin to electronic-vibrational resonance interactions in light-harvesting complexes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.