Hexafluorobisphenol A (6FBPA), as a novel nerve agents sensing molecule, has been successfully attached onto the surface of single-walled carbon nanotubes (SWNTs). The sensing groups have been confirmed by infrared spectroscopy, Raman spectroscopy and X-ray photoelectron spectrometry. The results revealed that the sensing groups had been successfully anchored on the surface of nanotubes. The quantitative determination of the functional groups has also been carried out through characterization by thermogravimetric analysis. Furthermore, the morphology of the resultant SWNT-6FBPA hybrids has been observed by transmission electron microscopy and scanning electron microscopy. Due to the existence of phenolic hydroxyl groups, which can form strong hydrogen-bonding with dimethyl methylphosphonate (DMMP) (simulant of nerve agent sarin), the functionalized SWNTs showed excellent sensitivity and selectivity while the sensing devices have been fabricated.
Strain glassy behavior (SGB) in correlation with premartensitic tweed (PMT) morphology was observed in an Au 7 Cu 5 Al 4 alloy, which is different from previously observed SGB that is incompatible with PMT in doped Ti-Ni alloys. Additionally, an "inverse freezing" transition from martensite to premartensitic strain glass upon heating was experimentally discovered, confirming a recent theoretical prediction. Investigations of rich phenomena in nonmagnetic Au-Cu-Al alloys are expected to shed light on the origin of both premartensitic transition and glasses.
BackgroundTissue engineering has become a promising therapeutic approach for bone regeneration. Nanofibrous scaffolds have attracted great interest mainly due to their structural similarity to natural extracellular matrix (ECM). Poly(lactide-co-ε-caprolactone) (PLCL) has been successfully used in bone regeneration, but PLCL polymers are inert and lack natural cell recognition sites, and the surface of PLCL scaffold is hydrophobic. Silk fibroin (SF) is a kind of natural polymer with inherent bioactivity, and supports mesenchymal stem cell attachment, osteogenesis, and ECM deposition. Therefore, we fabricated hybrid nanofibrous scaffolds by adding different weight ratios of SF to PLCL in order to find a scaffold with improved properties for bone regeneration.MethodsHybrid nanofibrous scaffolds were fabricated by blending different weight ratios of SF with PLCL. Human adipose-derived stem cells (hADSCs) were seeded on SF/PLCL nanofibrous scaffolds of various ratios for a systematic evaluation of cell adhesion, proliferation, cytotoxicity, and osteogenic differentiation; the efficacy of the composite of hADSCs and scaffolds in repairing critical-sized calvarial defects in rats was investigated.ResultsThe SF/PLCL (50/50) scaffold exhibited favorable tensile strength, surface roughness, and hydrophilicity, which facilitated cell adhesion and proliferation. Moreover, the SF/PLCL (50/50) scaffold promoted the osteogenic differentiation of hADSCs by elevating the expression levels of osteogenic marker genes such as BSP, Ocn, Col1A1, and OPN and enhanced ECM mineralization. In vivo assays showed that SF/PLCL (50/50) scaffold improved the repair of the critical-sized calvarial defect in rats, resulting in increased bone volume, higher trabecular number, enhanced bone mineral density, and increased new bone areas, compared with the pure PLCL scaffold.ConclusionThe SF/PLCL (50/50) nanofibrous scaffold facilitated hADSC proliferation and osteogenic differentiation in vitro and further promoted new bone formation in vivo, suggesting that the SF/PLCL (50/50) nanofibrous scaffold holds great potential in bone tissue regeneration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.