In light of environmental issues, lignocellulosic empty fruit bunch (EFB) biomass is promoted as a carbon–neutral, environmentally friendly, and renewable alternative feedstock. A comprehensive environmental assessment of EFB biorefineries is critical for determining their sustainability in parallel with the bioeconomy policy. Nonetheless, no life cycle assessment (LCA) has been performed on co-producing food and biochemicals (furfural and glucose) derived from EFB biomass. This research is the first to evaluate the environmental performance of the furfural and glucose co-production processes from EFB biomass. Environmental analysis is conducted using a prospective gate-to-gate LCA for four impact categories, including global warming potential (GWP), acidification (ADP), eutrophication (EP), and human toxicity (HT). Aspen Plus is used to simulate the co-production process of furfural and glucose as well as generate mass and energy balances for LCA inventory data usage. The findings suggest that the environmental footprint in respect of GWP, ADP, EP, and HT is 4846.85 kg CO
2
equivalent per ton EFB, 7.24 kg SO
2
equivalent per ton EFB, 1.52 kg PO
4
equivalent per ton EFB, and 2.62E-05 kg 1,4-DB equivalent per ton EFB, respectively. The normalized overall impact scores for GWP, ADP, EP, and HT are 1.16E-10, 2.28E-11, 6.12E-10, and 2.18E-17 years/ton of EFB, respectively. In summary, the proposed integrated plant is not only economically profitable but also environmentally sustainable. In the attempt to enhance the Malaysian economic sector based on the EFB, this study has the potential to serve as an indicator of the environmental sustainability of the palm oil industry.
Graphical abstract
Supplementary Information
The online version contains supplementary material available at 10.1007/s10668-022-02633-8.