World Health Organization has declared the ongoing outbreak of coronavirus disease 2019 a Public Health Emergency of International Concern. The virus was named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by the International Committee on Taxonomy of Viruses. Human infection with SARS-CoV-2 leads to a wide range of clinical manifestations ranging from asymptomatic, mild, moderate to severe. The severe cases present with pneumonia, which can progress to acute respiratory distress syndrome. The outbreak provides an opportunity for real-time tracking of an animal coronavirus that has just crossed species barrier to infect humans. The outcome of SARS-CoV-2 infection is largely determined by virus-host interaction. Here, we review the discovery, zoonotic origin, animal hosts, transmissibility and pathogenicity of SARS-CoV-2 in relation to its interplay with host antiviral defense. A comparison with SARS-CoV, Middle East respiratory syndrome coronavirus, community-acquired human coronaviruses and other pathogenic viruses including human immunodeficiency viruses is made. We summarize current understanding of the induction of a proinflammatory cytokine storm by other highly pathogenic human coronaviruses, their adaptation to humans and their usurpation of the cell death programmes. Important questions concerning the interaction between SARS-CoV-2 and host antiviral defence, including asymptomatic and presymptomatic virus shedding, are also discussed. ARTICLE HISTORY
This is a PDF file of a peer-reviewed paper that has been accepted for publication. Although unedited, the content has been subjected to preliminary formatting. Nature is providing this early version of the typeset paper as a service to our authors and readers. The text and figures will undergo copyediting and a proof review before the paper is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers apply.
Selected metallo-compounds exhibit potent activity against SARS-CoV-2 in vitro. Historically, metal compounds have been used as antimicrobial agents. However, their antiviral activities have not been explored extensively. Our earlier studies demonstrated that bismuth drugs and related compounds exhibit excellent antiviral activity against SARS-CoV 21. Building on these results, we selected six metal compounds-two bismuth(iii) citrate-based drugs (colloidal bismuth subcitrate (CBS) and RBC, two bismuth(iii) porphyrins (Bi(TPP) (TPP, tetraphenylporphyrinate) and Bi(TPyP) (TPyP, tetra(4-pyridyl)porphyrin)), one Au(i)-based drug (Auranofin), as well as its active derivative, chloro(triethylphosphine) gold(i) (Au(PEt 3)Cl)-to carry out a primary evaluation against SARS-CoV-2 in vitro (Extended Data Fig. 1). The 50% cytotoxicity concentrations (CC 50) of these compounds in monkey kidney Vero E6 cells were determined to be 3,254 ± 21 μM for CBS, 2,243 ± 43 μM for RBC, >400 μM for both Bi(TPP) and Bi(TPyP), 14.2 ± 1.3 μM for auranofin and 13.5 ± 1.8 μM for Au(PEt 3)Cl (Extended Data Fig. 2). The four bismuth(iii) compounds were prioritized for further evaluation of their CC 50 values in human colorectal Caco-2 cells because of their promisingly low cytotoxicity compared with the Au(i)-based drugs, resulting in similar CC 50 values ranging from 400 to 3,740 μM (Extended Data Fig. 2). To evaluate their antiviral potency, the half-maximal effective doses (EC 50) of the bismuth(iii) compounds were determined at low micromolar levels as 4.6 ± 0.4 µM for CBS, 2.3 ± 0.5 µM for RBC, 3.9 ± 1.2 µM for Bi(TPP) and 7.5 ± 0.9 µM for Bi(TPyP). Remarkably, addition of all four bismuth(iii) compounds at 1 h post infection (h.p.i.) reduced viral RNA loads in both Vero E6 and Caco-2 cells in a dose-dependent manner (Fig. 1). In non-toxic concentrations, CBS and RBC exhibited more potent anti-SARS-CoV-2 activity than Bi(TPP) and Bi(TPyP), as evidenced by the maximal ~2-log versus 1-log viral load reduction in the Vero E6 cell lysate (Fig. 1a-d), ~3-log versus ~2-log reduction in the Caco-2 cell lysate (Fig. 1e-h), ~4-log versus ~3-log reduction in the Vero E6 cell culture supernatant (Fig. 1i-l) and ~4-log versus ~3-log reduction in the Caco-2 cell culture supernatant (Fig. 1m-p). Importantly, bismuth(iii) drugs/compounds greatly inhibited SARS-CoV-2, as evidenced by the markedly decreased expression of viral nucleoprotein in the drug-treated cells when compared with the dimethyl sulfoxide (DMSO)-treated group (Fig. 2a-f). To investigate which steps of the SARS-CoV-2 replication cycle were interrupted by the selected drug compounds, we performed a time-of-drug-addition assay by treating virus-infected cells with each compound at different time points, followed by measurements of viral titre after 9 h.p.i., when the first round of progeny virions were detectable in the cell culture supernatant. (Fig. 2g,h). Intriguingly, addition of Bi(TPyP) during pre-treatment or co-incubation of cells significantly suppressed virus replication, whereas n...
The in vivo pathogenicity, transmissibility, and fitness of the SARS-CoV-2 Omicron (B.1.1.529) variant are unclear. We compared these virological attributes of this new variant of concern with those of the Delta (B.1.617.2) variant in a Syrian hamster model of COVID-19. Omicron-infected hamsters lost significantly less body weight and exhibited reduced clinical scores, respiratory tract viral burdens, cytokine/chemokine dysregulation, and lung damage than Delta-infected hamsters. Both variants were highly transmissible via contact transmission. In non-contact transmission studies, Omicron demonstrated similar or higher transmissibility than Delta. Delta outcompeted Omicron without selection pressure. This scenario drastically changed once immune selection pressure with neutralizing antibodies active against Delta but poorly active against Omicron was introduced. Next-generation vaccines and antivirals effective against this new VOC are urgently needed.
Mouse p202 is a disease locus for lupus and a dominant-negative inhibitor of AIM2 inflammasome activation. A human homolog of p202 has not been identified so far. Here, we report a novel transcript isoform of human IFI16-designated IFI16-β, which has a domain architecture similar to that of mouse p202. Like p202, IFI16-β contains two HIN domains, but lacks the pyrin domain. IFI16-β is ubiquitously expressed in various human tissues and cells. Its mRNA levels are also elevated in leukocytes of patients with lupus, virus-infected cells, and cells treated with interferon-β or phorbol ester. IFI16-β co-localizes with AIM2 in the cytoplasm, whereas IFI16-α is predominantly found in the nucleus. IFI16-β interacts with AIM2 to impede the formation of a functional AIM2-ASC complex. In addition, IFI16-β sequesters cytoplasmic dsDNA and renders it unavailable for AIM2 sensing. Enforced expression of IFI16-β inhibits the activation of AIM2 inflammasome, whereas knockdown of IFI16-β augments interleukin-1β secretion triggered by dsDNA but not dsRNA Thus, cytoplasm-localized IFI16-β is functionally equivalent to mouse p202 that exerts an inhibitory effect on AIM2 inflammasome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.