The paper suggests a new method that combines the Kennard and Stone algorithm (Kenstone, KS), hierarchical clustering (HC), and ant colony optimization (ACO)-based extreme learning machine (ELM) (KS-HC/ACO-ELM) with the density functional theory (DFT) B3LYP/6-31G(d) method to improve the accuracy of DFT calculations for the Y-NO homolysis bond dissociation energies (BDE). In this method, Kenstone divides the whole data set into two parts, the training set and the test set; HC and ACO are used to perform the cluster analysis on molecular descriptors; correlation analysis is applied for selecting the most correlated molecular descriptors in the classes, and ELM is the nonlinear model for establishing the relationship between DFT calculations and homolysis BDE experimental values. The results show that the standard deviation of homolysis BDE in the molecular test set is reduced from 4.03 kcal mol−1calculated by the DFT B3LYP/6-31G(d) method to 0.30, 0.28, 0.29, and 0.32 kcal mol−1by the KS-ELM, KS-HC-ELM, and KS-ACO-ELM methods and the artificial neural network (ANN) combined with KS-HC, respectively. This method predicts accurate values with much higher efficiency when compared to the larger basis set DFT calculation and may also achieve similarly accurate calculation results for larger molecules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.