High precision current measurement is very important for the calibration of various high-precision equipment and the measurement of other precision detection fields. A new current sensor based on diamond NV color center magnetic measurement method is proposed to realize the accurate measurement of current. This new current method can greatly improve the accuracy of current measurement. Experiments show that the linearity of the current sensor based on diamond NV color center can reach up to 33 ppm, which is superior to other current sensors and solves the problem of low linearity. When the range of input current is 5-40 A, the absolute error of calculated current is less than 51 µA, and the relative error is 2.42 × 10-6 at 40 A. Combined with the research content and results of the experiment, the application of the current sensor in the field of current precision measurement is prospected.
This paper builds a corresponding micro-displacement test system based on an ensemble nitrogen-vacancy (NV) color center magnetometer by combining the correlation between a magnetic flux concentrator, a permanent magnet, and micro-displacement. By comparing the measurement results obtained with and without the magnetic flux concentrator, it can be seen that the resolution of the system under the magnetic flux concentrator can reach 25 nm, which is 24 times higher than without the magnetic flux concentrator. The effectiveness of the method is proven. The above results provide a practical reference for high-precision micro-displacement detection based on the diamond ensemble.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.