Intraoperative diagnosis is essential for providing safe and effective care during cancer surgery 1. The existing workflow for intraoperative diagnosis based on hematoxylin and eosin-staining of processed tissue is time-, resource-, and labor-intensive 2,3. Moreover, interpretation of intraoperative histologic images is dependent on a contracting, unevenly distributed pathology workforce 4. Here, we report a parallel workflow that combines stimulated Raman histology (SRH) 5-7 , a label-free optical imaging method, and deep convolutional neural networks (CNN) to predict diagnosis at the bedside in near real-time in an automated fashion. Specifically, our CNN, trained on over 2.5 million SRH images, predicts brain tumor diagnosis in the operating room in under 150 seconds, an order of magnitude faster than conventional techniques (e.g., 20-30 minutes) 2. In a multicenter, prospective clinical trial (n = 278) we demonstrated that CNN-based diagnosis of SRH images was non-inferior to pathologist-based interpretation of conventional histologic images (overall accuracy, 94.6% vs. 93.9%). Our CNN learned a hierarchy of recognizable histologic feature representations to classify the major histopathologic classes of brain tumors. Additionally, we implemented a semantic segmentation method to identify tumor infiltrated, diagnostic regions within SRH images. These results demonstrate how intraoperative cancer diagnosis can be streamlined, creating a complimentary pathway for tissue diagnosis that is independent of a traditional pathology laboratory.
Background
Detection of glioma recurrence remains a challenge in modern neuro-oncology. Noninvasive radiographic imaging is unable to definitively differentiate true recurrence versus pseudoprogression. Even in biopsied tissue, it can be challenging to differentiate recurrent tumor and treatment effect. We hypothesized that intraoperative stimulated Raman histology (SRH) and deep neural networks can be used to improve the intraoperative detection of glioma recurrence.
Methods
We used fiber-laser-based SRH, a label-free, non-consumptive, high-resolution microscopy method (<60 secs per 1 x 1 mm2) to image a cohort of patients (n = 35) with suspected recurrent gliomas who underwent biopsy or resection. The SRH images were then used to train a convolutional neural network (CNN) and develop an inference algorithm to detect viable recurrent glioma. Following network training, the performance of the CNN was tested for diagnostic accuracy in a retrospective cohort (n = 48).
Results
Using patch-level CNN predictions, the inference algorithm returned a single Bernoulli distribution for the probability of tumor recurrence for each surgical specimen or patient. The external SRH validation dataset consisted of 48 patients (recurrent, 30; pseudoprogression, 18), and we achieved a diagnostic accuracy of 95.8%.
Conclusion
SRH with CNN-based diagnosis can be used to improve the intraoperative detection of glioma recurrence in near-real time. Our results provide insight into how optical imaging and computer vision can be combined to augment conventional diagnostic methods and improve the quality of specimen sampling at glioma recurrence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.