The metal-organic framework MIL-53 exhibits a structural transition between two possible porous structures, so-called large-pore (lp) and narrow-pore (np) forms, depending on the temperature or when guest molecules are adsorbed. (129)Xe NMR has been used to study the lp --> np transition induced by the adsorption of xenon as revealed by the adsorption isotherms. The NMR spectra show that the two structures, characterized by two distinct lines, coexist for xenon pressures above 5 x 10(4) Pa at room temperature, but a complete transformation is achieved when the temperature is decreased. An original interpretation of the NMR results allowed us to quantify the rate of the structural transformation. In particular, at room temperature, we have shown that 28% of the channels remain open. Two possible interpretations of the hysteresis observed in the chemical shift variation versus xenon pressure are proposed.
International audiencePulsed field gradient (PFG) NMR is a powerful tool to examine diffusion of adsorbates in porous systems. The use of mesoporous silicas with uniform particle sizes allowed us to demonstrate the possibilities of this technique. In particular, we confirmed that, in the Mitra mathematical approach of diffusion, the surfaceto-volume ratio is related to the geometry of the whole particle and not of a single pore. Hexane diffusion measured by PFG-NMR was efficient to study innovative materials like pseudomorphic MCM-41 mesoporous silicas presenting different pore topologies. The thorough analysis of the diffusion data allows monitoring the extension of the restricted diffusion domain. This method gives quantitative information on diffusion processes in bimodal pore systems and permits to gain insight into the internal structure of the pseudomorphic materials at different synthesis times. For a simple pore geometry, it is observed that the diffusion coefficient increases with the pore size. However, when materials possess a bimodal pore system (as for the intermediate materials of the pseudomorphic: transformation), the diffusion can either decrease or increase depending on the connectivity of the secondary large mesopores with the main mesoporous channels. By PFG-NMR it was possible to detect the rearrangement of the mesoporous network of MCM-41 with synthesis time and to confirm the time necessary for the ordered mesoporous channels of MCM-41 to run through the whole particle. This type of measurement can nicely complement usual characterization techniques (N-2 adsorption, SEM, TEM, etc.) in order to give a better picture of diverse porous materials
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.