The aerodynamics of the helicopter rotor is one of the most elating and exigent tribulations faced by the aerodynamicists today. Study through flow visualization process plays a key role in understanding the airflow distinctiveness and vortex interaction of the helicopter main rotor blade. Inspecting and scrutinizing the effects of wake vortices during operation is a great challenge and imperative in designing effective rotor system. This study aimed to visualize the main rotor airflow pattern of the Hirobo-FALCON 505 controllable subscale helicopter and seek for the vortex flow at the blade tip. The experimental qualitative data is correlated with quantitative data to perform scrupulous study on the airflow behavior and characteristics along with its distinctiveness spawned by the main rotor blade. Simulation using design software is performed in analogous stipulations to endow with comparability between the flow visualization results. Throughout the blade span several dissimilar flow patterns have been identified. The main rotor hub has turbulent flow at its center due to low energy of air amassed in this region whereas in the middle portion of the rotor blade, the air encompasses high kinetic energy with a clear straight streamline pattern.
Contra-rotating rotor blade is a system that can deliver poised torque condition for any rotorcraft without the manifestation of tail rotor contrivance. This system not only aids to sustain the stability of the aircraft, but also surges the aircraft's overall efficiency discrete to the conventional single rotor system. Contra-rotation system is capable of operating in reduced size and henceforth is effusively researched and applied to the unmanned micro aerial vehicle (MAV) technology. This study intended to reconnoiter the effect of varying the axial spacing between the forward rotor and the aft rotor of an archetypal contra-rotating rotor blade system. The quantitative data has espoused that the variation of axial spacing between the forward and aft rotor affected the total efficiency of the contra-rotating rotor blade system. Furthermore, at larger spacing, the effects were more substantial contributing adversely to the overall efficiency of the system.
Balancing is a rotating component is critical in any mechanism. Devoid of proper balancing, any vehicle - be it in air, land or sea, it will affect stability, control and safety. The same goes for rotor crafts. Imbalance of the helicopter tail rotor system leads to vibrations in the entire vehicle and may cause accident. Typically, for the tail rotor of a helicopter, the blade is a source of vibration on the tail boom. This not only causes inconvenience to the pilot but also reduces the life span of the helicopter. There is a certain amount of vibration in the helicopter rotor systems especially the tail rotor. Hence, balancing procedure for rotating mass was conducted to reduce the vibration. This research focuses on balancing of the tail rotor for UTM Single Seat Helicopter. Experiments have been conducted in order to study the vibration level of the tail rotor. Adding and removing masses separately on the tail rotor exhibited different vibration levels. The responses were analyzed and used for balancing the tail of rotor system. The balancing effort was considered successful, although there was still some residual unbalance in the tail rotor.
Helicopter rotor aerodynamics is prognosticated to be one of the most perplexing and enigmatic affliction encountered by both researchers and aviators throughout the ages. The bewilderment of the flow field around the main rotor blade ceaselessly remains unrequited in tangible flight environments. Appalling calamities repeatedly befall owing to these unforeseen and equivocal instances. In order to extricate these impediments, one must go back to the brass tacks and apprehend the cause. However, it is every so often exceedingly disconcerting to obtain experimental data due to intricacy, perplexity and substantial price tag. Subsequently, computational simulation is progressively becoming more of a preferred choice in recent times. Bearing this in mind, this study intended to simulate and visualize the air flow configuration of the main rotor blade using symmetrical and transonic airfoils to demarcate their physiognomies and behavior. Results have revealed that the transonic airfoil has a higher lift coefficient (Cl) than the symmetrical airfoil. Contrariwise, if used in an actual rotorcraft, the transonic airfoil can cause stern apprehension in terms of stability and control.
Structural strength is just as important as any other measures for a performance vehicle - let it be in air, land or water. Chassis is the most critical constituent in keeping the integrity of a vehicular structure. Likewise, helicopter chassis is like its skeleton. Devoid of it, the helicopter will neither take shape nor conserve the structural strength necessary. This research took the liberty of appraising the structural stiffness of the chassis for UTM Single-Seat Helicopter which is being developed at Universiti Teknologi Malaysia (UTM). This helicopter uses space frames as the main chassis structure. The material used for this chassis is AISI 4130 steel. Static analysis of the chassis was conducted specifically during hovering condition. The analysis started with modelling and simulating the chassis using Finite Element Analysis (FEA) software. Data obtained through FEA simulation were then tested and verified using the experimental data. The results obtained were intriguing and in line with the FAA standard Regulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.