Microbial agents including periodontal pathogens have recently appeared as important actors in Alzheimer's disease (AD) pathology. We examined associations of clinical periodontal and bacterial parameters with incident all-cause and AD dementia as well as AD mortality among US middle-aged and older adults. Clinical [Attachment Loss (AL); probing pocket depth (PPD)] and bacterial [pathogen immunoglobulin G (IgG)] periodontal markers were investigated in relation to AD and all-cause dementia incidence and to AD mortality, using data from the third National Health and Nutrition Examination Surveys (NHANES III, 1988-1994 linked longitudinally with National Death Index and Medicare data through January 1, 2014, with up to 26 years of follow-up. Sex-and age-specific multivariable-adjusted Cox proportional hazards models were conducted. Among those ≥65 years, AD incidence and mortality were consistently associated with PPD, two factors and one cluster comprised of IgG titers against Porphyromonas gingivalis (P. gingivalis), Prevotella melaninogenica (P. melaninogenica) and Campylobacter rectus (C. rectus) among others. Specifically, AD incidence was linked to a composite of C. rectus and P. gingivalis titers (per SD, aHR = 1.22; 95% CI, 1.04-1.43, p = 0.012), while AD mortality risk was increased with another composite (per SD, aHR = 1.46; 95% CI, 1.09-1.96, p = 0.017) loading highly on IgG for P. gingivalis, Prevotella intermedia, Prevotella nigrescens, Fusobacterium nucleatum, C. rectus, Streptococcus intermedius, Capnocylophaga Ochracea, and P. melaninogenica. This study provides evidence for an association between periodontal pathogens and AD, which was stronger for older adults. Effectiveness of periodontal pathogen treatment on reducing sequelae of neurodegeneration should be tested in randomized controlled trials.
Escherichia coli K-12 provided with glucose and a mixture of amino acids depletes L-serine more quickly than any other amino acid even in the presence of ammonium sulfate. A mutant without three 4Fe4S L-serine deaminases (SdaA, SdaB, and TdcG) of E. coli K-12 is unable to do this. The high level of L-serine that accumulates when such a mutant is exposed to amino acid mixtures starves the cells for C 1 units and interferes with cell wall synthesis. We suggest that at high concentrations, L-serine decreases synthesis of UDP-Nacetylmuramate-L-alanine by the murC-encoded ligase, weakening the cell wall and producing misshapen cells and lysis. The inhibition by high L-serine is overcome in several ways: by a large concentration of L-alanine, by overproducing MurC together with a low concentration of L-alanine, and by overproducing FtsW, thus promoting septal assembly and also by overexpression of the glycine cleavage operon. S-Adenosylmethionine reduces lysis and allows an extensive increase in biomass without improving cell division. This suggests that E. coli has a metabolic trigger for cell division. Without that reaction, if no other inhibition occurs, other metabolic functions can continue and cells can elongate and replicate their DNA, reaching at least 180 times their usual length, but cannot divide.The Escherichia coli genome contains three genes, sdaA, sdaB, and tdcG, specifying three very similar 4Fe4S L-serine deaminases. These enzymes are very specific for L-serine for which they have unusually high K m values (3, 32). Expression of the three genes is regulated so that at least one of the gene products is synthesized under all common growth conditions (25). This suggests an important physiological role for the enzymes. However, why E. coli needs to deaminate L-serine has been a long-standing problem of E. coli physiology, the more so since it cannot use L-serine as the sole carbon source.We showed recently that an E. coli strain devoid of all three L-serine deaminases (L-SDs) loses control over its size, shape, and cell division when faced with complex amino acid mixtures containing L-serine (32). We attributed this to starvation for single-carbon (C 1 ) units and/or S-adenosylmethionine (SAM). C 1 units are usually made from serine via serine hydroxymethyl transferase (GlyA) or via glycine cleavage (GCV). The L-SDdeficient triple mutant strain is starved for C 1 in the presence of amino acids, because externally provided glycine inhibits GlyA and a very high internal L-serine concentration along with several other amino acids inhibits glycine cleavage. While the parent cell can defend itself by reducing the L-serine level by deamination, this crucial reaction is missing in the ⌬sdaA ⌬sdaB ⌬tdcG triple mutant. We therefore consider these to be "defensive" serine deaminases.The fact that an inability to deaminate L-serine leads to a high concentration of L-serine and inhibition of GlyA is not surprising. However, it is not obvious why a high level of L-serine inhibits cell division and causes swelling, lys...
DNA replication is carried out by a multi-protein machine called the replisome. In Saccharomyces cerevisiae, the replisome is composed of over 30 different proteins arranged into multiple subassemblies, each performing distinct activities. Synchrony of these activities is required for efficient replication and preservation of genomic integrity. How this is achieved is particularly puzzling at the lagging strand, where current models of the replisome architecture propose turnover of the canonical lagging strand polymerase, Pol δ, at every cycle of Okazaki fragment synthesis.Here we established single-molecule fluorescence microscopy protocols to study the binding kinetics of individual replisome subunits in live S. cerevisiae. Our results show long residence times for most subunits at the active replisome, supporting a model where all subassemblies bind tightly and work in a coordinated manner for extended periods, including Pol δ, hence redefining the architecture of the active eukaryotic replisome..
Bacteria have been traditionally classified in terms of size and shape and are best known for their very small size. Escherichia coli cells in particular are small rods, each 1–2 μ. However, the size varies with the medium, and faster growing cells are larger because they must have more ribosomes to make more protoplasm per unit time, and ribosomes take up space. Indeed, Maaløe’s experiments on how E. coli establishes its size began with shifts between rich and poor media. Recently much larger bacteria have been described, including Epulopiscium fishelsoni at 700 μm and Thiomargarita namibiensis at 750 μm. These are not only much longer than E. coli cells but also much wider, necessitating considerable intracellular organization. Epulopiscium cells for instance, at 80 μm wide, enclose a large enough volume of cytoplasm to present it with major transport problems. This review surveys E. coli cells much longer than those which grow in nature and in usual lab cultures. These include cells mutated in a single gene (metK) which are 2–4 × longer than their non-mutated parent. This metK mutant stops dividing when slowly starved of S-adenosylmethionine but continues to elongate to 50 μm and more. FtsZ mutants have been routinely isolated as long cells which form during growth at 42°C. The SOS response is a well-characterized regulatory network that is activated in response to DNA damage and also results in cell elongation. Our champion elongated E. coli is a metK strain with a further, as yet unidentified mutation, which reaches 750 μm with no internal divisions and no increase in width.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.