Fatigue is a process of mechanical degradation that is usually assessed based on empirical rules and experimental data obtained from standardized tests. Fatigue data of engineering materials are commonly reported in S-N (the stress-life relation), ε-N (the strain-life relation), and da/dN-ΔK (the relation between the fatigue crack growth rate and the stress intensity factor range) data. Fatigue and static mechanical properties of additively manufactured (AM) alloys, as well as the types of materials, parameters of AM, processing, and testing are collected from thousands of scientific articles till the end of 2022 using natural language processing, machine learning, and computer vision techniques. The results show that the performance of AM alloys could reach that of conventional alloys although data dispersion and system deviation are present. The database (FatigueData-AM2022) is formatted in compact structures, hosted in an open repository, and analyzed to show their patterns and statistics. The quality of data collected from the literature is measured by defining rating scores for datasets reported in individual studies and through the fill rates of data entries across all the datasets. The database also serves as a high-quality training set for data processing using machine learning models. The procedures of data extraction and analysis are outlined and the tools are publicly released. A unified language of fatigue data is suggested to regulate data reporting for the fatigue performance of materials to facilitate data sharing and the development of open science.
The past few decades have witnessed rapid progresses in the research and development of complex metallic alloys such as metallic glasses and multi-principal element alloys, which offer new solutions to tackle engineering problems of materials such as the strength-toughness conflict and deployment in harsh environments and/or for long-term service. A fatigue database (FatigueData-CMA2022) is compiled from the literature by the end of 2022. Data for both metallic glasses and multi-principal element alloys are included and analyzed for their statistics and patterns. Automatic extraction and manual examination are combined in the workflow to improve the efficiency of processing, the quality of published data, and the reusability. The database contains 272 fatigue datasets of S-N (the stress-life relation), ε-N (the strain-life relation), and da/dN-ΔK (the relation between the fatigue crack growth rate and the stress intensity factor range) data, together with the information of materials, processing and testing conditions, and mechanical properties. The database and scripts are released in open repositories, which are designed in formats that can be continuously expanded and updated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.