MicroRNAs (miRs), a class of non-coding RNAs 18-25 nucleotides in length, can lead to mRNA degradation or inhibit protein translation by directly binding to the 3'-untranslational region (UTR) of their target mRNAs. The deregulation of miR-429 has been suggested to be involved in the development and progression of colon cancer. However, the detailed molecular mechanism involved remains to be determined. The aim of the present study was to investigate the role of miR-429 in the regulation of migration and invasion of colon cancer cells using RT-qPCR and western blotting. The results showed that the expression of miR-429 was reduced in colon cancer cell lines, when compared to a normal colon epithelial cell line. Treatment with DNA demethylation agent 5-aza-2'-deoxycytidine and histone deacetylase inhibitor phenylbutyrate (PBA), or transfection with the pre-miR-429 lentivirus plasmid led to the upregulation of miR-429 expression, as well as inhibition of migration and invasion in colon cancer cells. Investigation of the molecular mechanism showed that PAK6 was a novel target of miR-429, and the expression of PAK6 was upregulated in colon cancer tissues and cell lines, and was negatively regulated by miR-429 in colon cancer cells. Moreover, the cofilin signaling acted as a downstream effector of miR-429 in colon cancer cells. In conclusion, the results of the present study suggested that miR-429 inhibits the migration and invasion of colon cancer cells, partly at least, by mediating the expression of PAK6, as well as the activity of cofilin signaling. Therefore, miR-429 is as a potential molecular target for the treatment of colon cancer.
Esophageal squamous cell carcinoma (ESCC) is one of the most malignancies with a poor prognosis. The phospholipase Cε gene (PLCE1) encodes a novel ras-related protein effector mediating the effects of R-Ras on the actin cytoskeleton and membrane protrusion. However, molecular mechanisms pertinent to ESCC are unclear. We therefore designed PLCE1-special small interfering RNA and transfected to esophageal squamous cell (EC) 9706 cells to investigat the effects of PLCE1 gene silencing on the cell cycle and apoptosis of ESCC and indicate its important role in the development of ESCC. Esophageal cancer tissue specimens and normal esophageal mucosa were obtained and assayed by immunohistochemical staining to confirm overexpression of PLCE1 in neoplasias. Fluorescence microscopy was used to examine transfection efficiency, while the result of PLCE1 silencing was examined by reverse transcription (RT-PCR). Flow cytometry and annexin V apoptosis assays were used to assess the cell cycle and apoptosis, respectively. Expression of cyclin D1 and caspase-3 was detected by Western-blotting. The level of PLCE1 protein in esophageal cancer tissue was significantly higher than that in normal tissue. After transfection, the expression of PLCE1 mRNA in EC 9706 was significantly reduced, compared with the control group. Furthermore, flow cytometry results suggested that the PLCE1 gene silencing arrested the cell cycle in the G0/G1 phase; apoptosis was significantly higher than in the negative control group and mock group. PLCE1 gene silencing by RNAi resulted in decreased expression of cyclin D1 and increased expression of caspase-3. Our study suggests that PLCE1 may be an oncogene and play an important role in esophageal carcinogenesis through regulating proteins which control cell cycling and apoptosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.