This study examined the effect of high ambient temperature on the growth performance, meat quality, activity of the hypothalamo-pituitary-adrenal axis, and related gene expression in finishing pigs. All pigs received the same corn-soybean meal-based diet. Twenty-four Landrace pigs (initial bodyweight of 77.64 ± 0.67 kg) were assigned into three groups: Group 1 (22°C, ad libitum, 81% humidity); Group 2 (22°C, pair-fed to Group 3, 78% humidity); Group 3 (35°C, ad libitum, 78% humidity). The experiment lasted for 30 days. The average daily feed intake and average daily gain were markedly reduced in Group 3 compared with Group 1 (P < 0.05). The intramuscular fat content of longissimus dorsi muscle was decreased in Groups 2 and 3 (P < 0.05) when compared with Group 1. Muscle pH at 24 h post-mortem was higher in Group 3 (P < 0.05) compared with Groups 1 and 2, and the pH at 48 h post-mortem was higher in Group 3 (P < 0.05) than in Group 1. The MyHC IIb transcript abundance was lower in Group 3 (P < 0.05) than in the other two groups and that of MyHC IIx was higher in Group 3 than in Group 2 (P < 0.05). The relative abundance of calpastatin transcripts was lower in Group 3 (P < 0.05) than in the other two groups. Cortisol concentrations were lower in Group 3 (P < 0.05) than in Groups 1 and 2 on Day 3. Corticotropin releasing hormone concentrations in Group 3 were lower at Day 3 (P < 0.05) when compared with Group 2 and at Day 30 when compared with Groups 1 and 2. Glucagon concentrations were lower in Group 3 (P < 0.05) when compared with Groups 1 and 2 on Day 30. These results indicate that the decreased intramuscular fat content of pigs at high ambient temperature results from the reduction in feed intake. Independently of its effect on feed intake, high ambient temperature affected the meat quality of finishing pigs by increasing pH value probably due to the lower serum concentrations of corticotropin releasing hormone, and inducing a transition of muscle fibre types from IIb to IIx.
Background The mechanism of high ambient temperature affecting meat quality is not clear till now. This study investigated the effect of high ambient temperature on meat quality and nutrition metabolism in finishing pigs. Methods All pigs received the same corn-soybean meal diet. A total of 24 Landrace × Large White pigs (60 kg BW, all were female) were assigned to three groups: 22AL (fed ad libitum at 22 °C), 35AL (ad libitum fed at 35 °C), and 22PF (at 22 °C, but fed the amount consumed by pigs raised at 35 °C) and the experiment lasted for 30 days. Results Feed intake, weight gain, and intramuscular fat (IMF) content of pigs were reduced, both directly by high temperature and indirectly through reduced feed intake. Transcriptome analysis of longissimus dorsi (LM) showed that downregulated genes caused by feed restriction were mainly involved in muscle development and energy metabolism; and upregulated genes were mainly involved in response to nutrient metabolism or extracellular stimulus. Apart from the direct effects of feed restriction, high temperature negatively affected the muscle structure and development, energy, or catabolic metabolism, and upregulated genes were mainly involved in DNA or protein damage or recombination, cell cycle process or biogenesis, stress response, or immune response. Conclusion Both high temperature and reduced feed intake affected growth performance and meat quality. Apart from the effects of reducing feed intake, high temperature per se negatively downregulated cell cycle and upregulated heat stress response. High temperature also decreased the energy or catabolic metabolism level through PPAR signaling pathway. Electronic supplementary material The online version of this article (10.1186/s12263-019-0643-9) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.