hBMSCs possess of great potential to differentiate into functional neurons, indicating that hBMSCs may be an ideal cell source in managing a variety of clinical diseases such as spinal cord injury.
Background: Human dental pulp stem cells (hDPSCs) exhibit excellent differentiation potential and are capable of differentiating into several different cellular phenotypes, including neurons. Platelet-rich plasma (PRP) contains numerous growth factors that can stimulate stem cell differentiation. In this study, we investigated the potential stimulatory effects of PRP on neurogenic differentiation and anti-apoptosis of hDPSCs in injured spinal cords.
Methods:The unipotential differentiation capacity of hDPSCs was analyzed by cell surface antigen identification and cell cycle analysis. A spinal cord injury rat model composed of 40 Sprague-Dawley (SD) rats was used to facilitate an in vivo study. Rats were divided into four groups: a double-treatment group (receiving both neurogenic-induced hDPSCs and PRP), two single-treatment groups (receiving neurogenicinduced hDPSCs or PRP) and a sham group (receiving normal saline). The Basso, Beattie, Bresnahan Locomotor Rating Scale was subsequently used to evaluate the motor function of the spinal cord. Cell viability and differentiation of hDPSCs in the damaged spinal cords were analyzed and apoptosis of neural cells was evaluated using the terminal uridine nucleotide end labeling (TUNEL) assay.Results: Growth pattern, cell surface marker and cell cycle analyses revealed that hDPSCs have a high degree of multi-directional differentiation potential and can be induced into neurons in vitro. In the rat spinal cord injury model, double-treatment with hDPSC/PRP or single treatment with hDPSCs or PRP significantly improved motor function compared with the sham group (P<0.05). Apoptosis of neural cells was observed to be significantly higher in the sham group compared to any of the treatment groups. Doubletreatment with hDPSCs and PRP resulted in the lowest apoptotic rate among the groups analyzed.Conclusions: hDPSCs exhibit differentiation potential and are capable of transforming into neural cells both in vitro and in vivo. Significantly increased inhibition of neuronal apoptosis and improved motor function recovery of the spinal cord were observed following double-treatment with hDPSCs and PRP compared with the single-treatment groups.
The profound influence of gut flora on host immune system and its link with autoimmune disorders have been established. However, the role of certain antibiotic in progression of autoimmune disorder is still confusing. Here, we employed a collagen-induced arthritis (CIA) model to explore the role of clindamycin administration in different scenarios. In the first scenario, mice treated with antibiotics for 4 weeks were performed with the induction of CIA immediately. The results showed that clindamycin administration promoted the incidence and severity of CIA, while the recipients of vancomycin showed completed tolerance. We also found that increased gut-associated Th1 and Th17 cells might be related to the subsequent expansion of collagen-specific immune response. In the second scenario, mice treated with antibiotics for 4 weeks were performed with CIA induction 4 weeks later. Notably, clindamycin administration showed a prolonged impact on the incidence and severity of CIA, as well as the gut immunity as compared to vancomycin administration. In addition, antibody depletion of integrin α4β7 systemically resulted in an impaired CIA response, underlining the influence of gut immunity. In the mice that received clindamycin, the abundance of anaerobic bacteria was significantly decreased and showed little recovery at 4 weeks later. Our observations highlighted the different characteristics of antibiotic administration on the development of autoimmune disorders and indicated its link with gut immunity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.