The aggregation behavior of a soft, rubbery colloidal system with a relatively low glass transition temperature, T(g) approximately -20 degrees C, has been investigated. It is found that the average gyration and hydrodynamic radii, R(g) and R(h), measured by light scattering techniques, evolve in time in parallel, without exhibiting the crossover typical of rigid particle aggregation. Cryogenic scanning electron microscopy (cryo-SEM) images reveal sphere-like clusters, indicating that complete coalescence between particles occurs during aggregation. Since coalescence leads to a reduction in the total colloidal surface area, the surfactant adsorption equilibrium, and thus the colloidal stability, change in the course of aggregation. It is found that to simulate the observed kinetic behavior based on the population balance equations, it is necessary to assume that all the clusters are spherical and to account for variations in the colloidal stability of each aggregating particle pair with time. This indicates that, for the given system, the coalescence is very fast, i.e., its time scale is much smaller than that of the aggregation.
A generalized model for colloidal stability has been validated against experimentally measured values of Fuchs stability ratio and critical coagulation concentration (ccc) for electrolytes with mono- or divalent cation, i.e., potassium chloride and magnesium chloride, respectively. Besides the classical DLVO theory, the generalized model accounts for the interplay between colloidal interactions and the association of cations with the particles surface charge groups. The model parameters are either obtained or estimated purely on the basis of independent information available in the literature. For the monovalent salt, the predictions agree well with literature experimental data, forecasting both the ccc values and stability ratios quantitatively. For the divalent salt the predictions for large values of the stability ratio tend to deviate from the experimental data produced in this work, but it is noted that the onset of stability, i.e., the ccc, and small stability ratios are correctly predicted. Moreover, a comparison of the above results with those neglecting the effect of counterion association with the particles surface charge groups indicates that the latter substantially overestimates stability ratios in the presence of high salt concentration in the case of the monovalent salt, and leads to unrealistic large values of the ccc for the divalent salt. Including the association of cations with the particles surface charge groups can explain the relatively low values of experimental ccc for divalent salts compared to the theoretical predictions by the classical DLVO theory neglecting ion association, which is apoint of interest in industrial coagulation processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.