Traditional topological insulators support the topologically protected boundary states that are one dimension lower than the system itself. Recently, higher-order topological insulators have received increasing attention in the field of acoustic wave manipulation due to their unique bulk-boundary correspondence principle, hosting both gapped edge states and in-gap corner states simultaneously. However, for most of the topological acoustic systems, the lack of reconfigurability and the inevitable outer trivial regions with considerable thickness restrict the potential applications of acoustic topological insulators. Here, we experimentally demonstrate a reconfigurable condensed acoustic second-order topological insulator in free space by using subwavelength soda cans whose side length is significantly reduced to 1.89 times of the corresponding wavelength. The topological nontrivial phase is introduced through tunably modulating the interval between cans. Without the typically required outer trivial regions, we observe the topological corner states at the corner of the finite structures in both simulations and experiments. Furthermore, the robustness against the defects induced by dislocations and deformations is discussed. We foresee that the proposal may facilitate the application potentials of topological acoustics in low-frequency sound manipulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.