To investigate the influence of the inflow angle on the hydraulic loss and internal flow fields of a vertical mixed-flow pump device, unsteady numerical simulations were performed under different inflow angles ( θ = 0°, 10°, 20°, and 30°). The calculation results were validated using an external characteristic test at an inflow angle of 0°. The entropy production theory was applied to analyse the energy loss and dissipation rate distribution in a vertical mixed-flow pump device under different inflow angles. Influenced by asymmetric inflow, the design point of the external characteristics deviated towards the overload flow rate, and the maximum deviations were obtained under 1.2 Qdes, whereas the influence of the inflow angle on the internal flow fields was the most significant under the part-load flow rate. When the inflow angle increased from 0° to 30°, the total entropy production in the pump device increased by 18.35% under 0.6 Qdes, and indirect dissipation accounted for the largest proportion. The internal flow patterns in the impeller and guide vane were also distorted by asymmetric inflow. The indirect dissipation rate on the suction side of the impeller blade, interface between the impeller and diffuser, and pressure side of the guide vane increased significantly with an increase in the inflow angle. To restrain the influence of asymmetric inflow, it is of great significance to optimise the hydraulic design structure of the inflow runner. In this study, a middle spacer pier was used to improve the operational efficiency of the pump device.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.