The inference of gene co-expressions from microarray and RNA-sequencing data has led to rich insights on biological processes and disease mechanisms. However, the bulk samples analyzed in most studies are a mixture of different cell types. As a result, the inferred co-expressions are confounded by varying cell type compositions across samples and only offer an aggregated view of gene regulations that may be distinct across different cell types. The advancement of single cell RNA-sequencing (scRNA-seq) technology has enabled the direct inference of co-expressions in specific cell types, facilitating our understanding of cell-type-specific biological functions. However, the high sequencing depth variations and measurement errors in scRNA-seq data present significant challenges in inferring cell-type-specific gene co-expressions, and these issues have not been adequately addressed in the existing methods. We propose a statistical approach, CS-CORE, for estimating and testing cell-type-specific co-expressions, built on a general expression-measurement model that explicitly accounts for sequencing depth variations and measurement errors in the observed single cell data. Systematic evaluations show that most existing methods suffer from inflated false positives and biased co-expression estimates and clustering analysis, whereas CS-CORE has appropriate false positive control, unbiased co-expression estimates, good statistical power and satisfactory performance in downstream co-expression analysis. When applied to analyze scRNA-seq data from postmortem brain samples from Alzheimer's disease patients and controls and blood samples from COVID-19 patients and controls, CS-CORE identified cell-type-specific co-expressions and differential co-expressions that were more reproducible and/or more enriched for relevant biological pathways than those inferred from other methods.
The advancement of single cell RNA-sequencing (scRNA-seq) technology has enabled the direct inference of co-expressions in specific cell types, facilitating our understanding of cell-type-specific biological functions. For this task, the high sequencing depth variations and measurement errors in scRNA-seq data present two significant challenges, and they have not been adequately addressed by existing methods. We propose a statistical approach, CS-CORE, for estimating and testing cell-type-specific co-expressions, that explicitly models sequencing depth variations and measurement errors in scRNA-seq data. Systematic evaluations show that most existing methods suffered from inflated false positives as well as biased co-expression estimates and clustering analysis, whereas CS-CORE gave accurate estimates in these experiments. When applied to scRNA-seq data from postmortem brain samples from Alzheimer’s disease patients/controls and blood samples from COVID-19 patients/controls, CS-CORE identified cell-type-specific co-expressions and differential co-expressions that were more reproducible and/or more enriched for relevant biological pathways than those inferred from existing methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.