Halide perovskites have attracted surge of interest in the memristor field due to their superior electrical property and corresponding remarkable device performances. However, the issues of toxicity and unstable properties still severely restrict their potential applications. Here, the lead-free all-inorganic perovskite Cs3Cu2Br5 films are adopted as the switching layer to fabricate memristors with Al/Cs3Cu2Br5/ITO structure. The prepared Al/Cs3Cu2Br5/ITO memristors exhibit typical reproducible bipolar resistive switching (RS) behavior with striking characteristics, including ultralow operating voltages (0.45, −0.39 V), moderate high resistance state/low resistance state ratio (≈102), and remarkable retention time (>104 s). In addition, the multilevel storage capability can be achieved by controlling compliance current. The RS effect, stemming from the formation/rupture of both localized conductive Br vacancy/Al atom filaments, is proposed to illustrate the memristors. More importantly, the RS behavior of Al/Cs3Cu2Br5/ITO memristors maintains robustness in harsh environments with humidity up to 80%, enabling secure hardware applicable in extreme environments. This work demonstrates the opportunity for exploring the next-generation nonvolatile memories based on lead-free all-inorganic halide perovskites in future environmental-friendly and humidity robust electronics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.