Emerging smart textiles have enriched a variety of wearable technologies, including fiber optic technology. Optic fibers are widely applied in communication, sensing, and healthcare, and smart textiles enable fiber optic technology to be worn close to soft and curved human body parts for personalized functions. This review briefly introduces wearable fiber optic applications with various functions, including fashion and esthetics, vital signal monitoring, and disease treatment. The main working principles of side emission, wavelength modulation, and intensity modulation are summarized. In addition, textile fabrication techniques, including weaving and knitting, are discussed and illustrated as combination methods of embedding fiber optic technology into textile fabric. In conclusion, the combination of optical fibers and textiles has drawn considerable interest and developed rapidly. This work provides an overview of textile-based wearable fiber optic technology and discusses potential textile fabrication techniques for further improvement of wearable fiber optic applications.
Secondary injuries are common during upper limb rehabilitation training because of uncontrollable physical force and overexciting activities, and long-time training may cause fatigue and reduce the training effect. This study proposes a wearable monitoring device for upper limb rehabilitation by integrating electrocardiogram and electromyogram (ECG/EMG) sensors and using data acquisition boards to obtain accurate signals during robotic glove assisting training. The collected ECG/EMG signals were filtered, amplified, digitized, and then transmitted to a remote receiver (smart phone or laptop) via a low-energy Bluetooth module. A software platform was developed for data analysis to visualize ECG/EMG information, and integrated into the robotic glove control module. In the training progress, various hand activities (i.e., hand closing, forearm pronation, finger flexion, and wrist extension) were monitored by the EMG sensor, and the changes in the physiological status of people (from excited to fatigue) were monitored by the ECG sensor. The functionality and feasibility of the developed physiological monitoring system was demonstrated by the assisting robotic glove with an adaptive strategy for upper limb rehabilitation training improvement. The feasible results provided a novel technique to monitor individual ECG and EMG information holistically and practically, and a technical reference to improve upper limb rehabilitation according to specific treatment conditions and the users’ demands. On the basis of this wearable monitoring system prototype for upper limb rehabilitation, many ECG-/EMG-based mobile healthcare applications could be built avoiding some complicated implementation issues such as sensors management and feature extraction.
Wearable sensing technologies have been developed rapidly in the last decades for physiological and biomechanical signal monitoring. Much attention has been paid to functions of wearable applications, but comfort parameters have been overlooked. This research presents a developed fabric temperature sensor by adopting fiber Bragg grating (FBG) sensors and processing via a textile platform. This FBG-based quasi-distributed sensing system demonstrated a sensitivity of 10.61 ± 0.08 pm/°C with high stability in various temperature environments. No obvious wavelength shift occurred under the curvatures varying from 0 to 50.48 m−1 and in different integration methods with textiles. The temperature distribution monitored by the developed textile sensor in a complex environment with multiple heat sources was deduced using MATLAB to present a real-time dynamic temperature distribution in the wearing environment. This novel fabric temperature sensor shows high sensitivity, stability, and usability with comfort textile properties that are of great potential in wearable applications.
Purpose. This systematic review and meta-analysis was conducted to investigate the effects of various acutherapies on knee osteoarthritis (KOA) relief in the elderly. Methods. Five databases were accessed from inception to July 2017 for searching randomized controlled trials (RCTs) on acutherapy for KOA relief in the elderly. Data were pooled after trial quality assessment for meta-analysis. Outcomes were the scores of knee pain, knee stiffness, and physical function accessed by Western Ontario and McMaster Universities Osteoarthritis (WOMAC) Index. Results. 17 RCTs including 4774 subjects were included. The results indicated that acutherapy significantly affected knee pain (standardized mean difference, i.e., SMD = - 0.73, [95% CI, -0.98 to -0.47], P <0.001), knee stiffness (SMD = -0.66, [95%CI, -0.85 to -0.47], P <0.001), and physical function (SMD = -1.56, [95%CI, -2.17 to -0.95], P<0.001) when compared with control condition without intervention of any acutherapy. Moreover, acutherapy was more effective than corresponding sham (placebo) intervention applied on nonacupoints (SMD = -0.16, [95% CI, -0.32 to -0.01], P = 0.04). However, no significant differences were found on treatment effects between acutherapy and sham acutherapy at the same acupoints (SMD= - 0.09, [95%CI, -0.40 to 0.21], P = 0.55). Conclusions. Acutherapy was an effective approach for KOA relief in the elderly. The selection of acupoints position could be a crucial factor that influences the treatment efficacy of acutherapy.
Copper ion is closely associated with the ecosystem and human health, and even a little excessive dose in drinking water may result in a range of health problems. However, it remains challenging to produce a highly sensitive, reliable, cost-effective and electromagnetic-interference interference-immune device to detect Cu2+ ion in drinking water. In this paper, a taper-in-taper fiber sensor was fabricated with high sensitivity by mode-mode interference and deposited polyelectrolyte layers for Cu2+ detection. We propose a new structure which forms a secondary taper in the middle of the single-mode fiber through two-arc discharge. Experimental results show that the newly developed fiber sensor possesses a sensitivity of 2741 nm/RIU in refractive index (RI), exhibits 3.7 times sensitivity enhancement when compared with traditional tapered fiber sensors. To apply this sensor in copper ions detection, the results present that when the concentration of Cu2+ is 0–0.1 mM, the sensitivity could reach 78.03 nm/mM. The taper-in-taper fiber sensor exhibits high sensitivity with good stability and mechanical strength which has great potential to be applied in the detection of low Cu2+ ions in some specific environments such as drinking water.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.