Neural Networks (NN) are a family of models for a broad range of emerging machine learning and pattern recondition applications. NN techniques are conventionally executed on general-purpose processors (such as CPU and GPGPU), which are usually not energy-efficient since they invest excessive hardware resources to flexibly support various workloads. Consequently, application-specific hardware accelerators for neural networks have been proposed recently to improve the energy-efficiency. However, such accelerators were designed for a small set of NN techniques sharing similar computational patterns, and they adopt complex and informative instructions (control signals) directly corresponding to high-level functional blocks of an NN (such as layers), or even an NN as a whole. Although straightforward and easy-to-implement for a limited set of similar NN techniques, the lack of agility in the instruction set prevents such accelerator designs from supporting a variety of different NN techniques with sufficient flexibility and efficiency. In this paper, we propose a novel domain-specific Instruction Set Architecture (ISA) for NN accelerators, called Cambricon, which is a load-store architecture that integrates scalar, vector, matrix, logical, data transfer, and control instructions, based on a comprehensive analysis of existing NN techniques. Our evaluation over a total of ten representative yet distinct NN techniques have demonstrated that Cambricon exhibits strong descriptive capacity over a broad range of NN techniques, and provides higher code density than general-purpose ISAs such as x86, MIPS, and GPGPU. Compared to the latest state-ofthe-art NN accelerator design DaDianNao [5] (which can only accommodate 3 types of NN techniques), our Cambricon-based accelerator prototype implemented in TSMC 65nm technology incurs only negligible latency/power/area overheads, with a versatile coverage of 10 different NN benchmarks.
Continuous-valued deep convolutional networks (DNNs) can be converted into accurate rate-coding based spike neural networks (SNNs). However, the substantial computational and energy costs, which is caused by multiple spikes, limit their use in mobile and embedded applications. And recent works have shown that the newly emerged temporal-coding based SNNs converted from DNNs can reduce the computational load effectively. In this paper, we propose a novel method to convert DNNs to temporal-coding SNNs, called TDSNN. Combined with the characteristic of the leaky integrate-andfire (LIF) neural model, we put forward a new coding principle Reverse Coding and design a novel Ticking Neuron mechanism. According to our evaluation, our proposed method achieves 42% total operations reduction on average in large networks comparing with DNNs with no more than 0.5% accuracy loss. The evaluation shows that TDSNN may prove to be one of the key enablers to make the adoption of SNNs widespread.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.