The mechanism of phagophore closure remains unclear due to technical limitations in distinguishing unclosed and closed autophagosomal membranes. Here, we report the HaloTag-LC3 autophagosome completion assay that specifically detects phagophores, nascent autophagosomes, and mature autophagic structures. Using this assay, we identify the endosomal sorting complexes required for transport (ESCRT)-III component CHMP2A as a critical regulator of phagophore closure. During autophagy, CHMP2A translocates to the phagophore and regulates the separation of the inner and outer autophagosomal membranes to form double-membrane autophagosomes. Consistently, inhibition of the AAA-ATPase VPS4 activity impairs autophagosome completion. The ESCRT-mediated membrane abscission appears to be a critical step in forming functional autolysosomes by preventing mislocalization of lysosome-associated membrane glycoprotein 1 to the inner autophagosomal membrane. Collectively, our work reveals a function for the ESCRT machinery in the final step of autophagosome formation and provides a useful tool for quantitative analysis of autophagosome biogenesis and maturation.
The process of phagophore closure requires the endosomal sorting complex required for transport III (ESCRT-III) subunit CHMP2A and the AAA ATPase VPS4, but their regulatory mechanisms remain unknown. Here, we establish a FACS-based HaloTag-LC3 autophagosome completion assay to screen a genome-wide CRISPR library and identify the ESCRT-I subunit VPS37A as a critical component for phagophore closure. VPS37A localizes on the phagophore through the N-terminal putative ubiquitin E2 variant domain, which is found to be required for autophagosome completion but dispensable for ESCRT-I complex formation and the degradation of epidermal growth factor receptor in the multivesicular body pathway. Notably, loss of VPS37A abrogates the phagophore recruitment of the ESCRT-I subunit VPS28 and CHMP2A, whereas inhibition of membrane closure by CHMP2A depletion or VPS4 inhibition accumulates VPS37A on the phagophore. These observations suggest that VPS37A coordinates the recruitment of a unique set of ESCRT machinery components for phagophore closure in mammalian cells.
SUMMARY
During autophagy, phagophores grow into doublemembrane vesicles called autophagosomes, but the underlying mechanism remains unclear. Here, we show a critical role of Atg2A in phagophore expansion. Atg2A translocates to the phagophore at the mitochondria-associated ER membrane (MAM) through a C-terminal 45-amino acid domain that we have termed the MAM localization domain (MLD). Proteomic analysis identifies the outer mitochondrial membrane protein TOM40 as a MLD-interacting partner. The Atg2A-TOM40 interaction is responsible for MAM localization of Atg2A and requires the TOM receptor protein TOM70. In addition, Atg2A interacts with Atg9A by a region within its N terminus. Inhibition of either Atg2A-TOM40 or Atg2A-Atg9A interactions impairs phagophore expansion and accumulates Atg9A-vesicles in the vicinity of autophagic structures. Collectively, we propose a model that the TOM70-TOM40 complex recruits Atg2A to the MAM for vesicular and/or nonvesicular lipid transport into the expanding phagophore to grow the size of autophagosomes for efficient autophagic flux.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.