In this work, we propose an original scheme for generic content-based retrieval of marker-based motion capture data. It works on motion capture data of arbitrary subject types and arbitrary marker attachment and labelling conventions. Specifically, we propose a novel motion signature to statistically describe both the high-level and the low-level morphological and kinematic characteristics of a motion capture sequence, and conduct the content-based retrieval by computing and ordering the motion signature distance between the query and every item in the database. The distance between two motion signatures is computed by a weighted sum of differences in separate features contained in them. For maximum retrieval performance, we propose a method to pre-learn an optimal set of weights for each type of motion in the database through biased discriminant analysis, and adaptively choose a good set of weights for any given query at the run time. Excellence of the proposed scheme is experimentally demonstrated on various data sets and performance metrics.
Content-based human motion capture (MoCap) data retrieval facilitates reusing motion data that have already been captured and stored in a database. For a MoCap data retrieval system to get practically deployed, both high precision and natural interface are demanded. Targeting both, we propose a video-based human MoCap data retrieval solution in this work. It lets users to specify a query via a video clip, addresses the representational gap between video and MoCap clips and extracts discriminative motion features for precise retrieval. Specifically, the proposed scheme firstly converts each video clip or MoCap clip at a certain viewpoint to a binary silhouette sequence. Regarding a video or MoCap clip as a set of silhouette images, the proposed scheme uses a convolutional neural network, named MotionSet, to extract the discriminative motion feature of the clip. The extracted motion features are used to match a query to repository MoCap clips for the retrieval. Besides the algorithmic solution, we also contribute a human MoCap dataset and a human motion video dataset in couple that contain various action classes. Experiments show that our proposed scheme achieves an increase of around 0.25 in average MAP and costs about 1/26 time for online retrieval, when compared with the benchmark algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.