Computational complexity has been the bottleneck for applying physically based simulations in large urban areas with high spatial resolution for efficient and systematic flooding analyses and risk assessment. To overcome the issue of long computational time and accelerate the prediction process, this paper proposes that the prediction of maximum water depth can be considered an image‐to‐image translation problem in which water depth rasters are generated using the information learned from data instead of by conducting simulations. The proposed data‐driven urban pluvial flood approach is based on a deep convolutional neural network trained using flood simulation data obtained from three catchments and 18 hyetographs. Multiple tests to assess the accuracy and validity of the proposed approach were conducted with both design and real hyetographs. The results show that flood prediction based on neural networks use only 0.5% of the time compared with that of physically based models, with promising accuracy and generalizability. The proposed neural network can also potentially be applied to different but relevant problems, including flood analysis for flood‐safe urban layout planning.
The study of urban morphology contributes to the evolution of cities and sustainable development. Urban morphological feature extraction and similarity analysis represents a practical framework in many studies to interpret and introduce the current built environment to aid in proposing novel designs. In conventional methods, morphological features are represented based on qualitative descriptions, symbolical interpretation, or manually selected indicators. However, these methods could cause subjective bias and limit the generalizability. This study proposes a hybrid data-driven approach to support quantitative morphological descriptions and multi-dimensional similarity analysis for urban design decision-making and to further morphology-related studies using information abundance via a deep-learning approach. We constructed a dataset of 3817 residential plots with geometrical and related infrastructure information. A deep convolutional neural network, GoogLeNet, was implemented with the plots’ figure–ground images, by quantifying the morphological features into 2048-dimensional feature vectors. We conducted a similarity analysis of the plots by calculating the Euclidean distance between the high-dimensional feature vectors. Then, a comparison study was performed by retrieving cases based on the plot shape and plots with buildings separately. The proposed method considers the overall characteristics of the urban morphology and social infrastructure situations for similarity analysis. This method is flexible and effective. The proposed framework indicates the feasibility and potential of integrating task-oriented information to introduce custom and adequate references via deep learning methods, which could support decision making and association studies on morphology with urban consequences. This work could serve as a basis for further typo-morphology studies and other morphology-related ecological, social, and economic studies for sustainable built environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.