IMPORTANCEOveractivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19.ObjectiveTo determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19.DESIGN, SETTING, AND PARTICIPANTSIn an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022).INTERVENTIONSPatients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days.MAIN OUTCOMES AND MEASURESThe primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes.RESULTSOn February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively).CONCLUSIONS AND RELEVANCEIn this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes.TRIAL REGISTRATIONClinicalTrials.gov Identifier: NCT02735707
The need for temperature modulation (mostly cooling) in critically ill patients is based on the expected benefits associated with decreased metabolic demands. However, evidence-based guidelines for temperature management in a majority of critically ill patients with fever are still lacking. The aim of our retrospective single-site observational study was to determine the differences in ICU treatment between patients in whom their temperature remained within the target temperature range for ≥25% of time (inTT group) and patients in whom their temperature was outside the target temperature range for <24% of time (outTT group). We enrolled 76 patients undergoing invasive mechanical ventilation for respiratory failure associated with sepsis. We observed no significant differences in survival, mechanical ventilation settings and duration, vasopressor support, renal replacement therapy and other parameters of treatment. Patients in the inTT group were significantly more frequently cooled with the esophageal cooling device, received a significantly lower cumulative dose of acetaminophen and significantly more frequently developed a presence of multidrug-resistant pathogens. In our study, achieving a better temperature control was not associated with any improvement in treatment parameters during ICU stay. A lower prevalence of multidrug-resistant pathogens in patients with higher body temperatures opens a question of a pro-pyrexia approach with an aim to achieve better patient outcomes.
Leptospirosis is an ubiquitous zoonosis with significant morbidity and mortality. Approximately 10 percent of human infections evolve into a severe form, with a sepsis-like disease, multiorgan failure, and significant mortality rate. The cornerstone of treatment of severe disease is antibiotic therapy, with the aims of preventing complications, reducing the duration of disease, and ultimately reducing mortality. The initiation of antibiotic chemotherapy can precipitate a febrile inflammatory reaction, also known as a Jarisch–Herxheimer reaction. We present a case report of a patient with severe leptospirosis, complicated by multiorgan failure with severe circulatory failure of distributive and cardiogenic etiology, possibly as a consequence of the Jarisch–Herxheimer reaction. The patient was treated with antimicrobial therapy and other supportive measures along with high-dose corticosteroid therapy, long-term mechanical ventilation, high-dose vasopressor therapy, and continuous veno-venous hemodiafiltration with extracorporeal cytokine removal.With this case, we would like to report on a patient presenting with two neglected diseases in our part of Europe, who was treated with novel therapeutic strategies.
Modulating body temperature, mostly through the use of antipyretics, is a commonly employed therapeutic intervention in medical practice. However, emerging evidence suggests that hyperthermia could serve as an adjuvant therapy for patients with infection. We performed a narrative review to explore the application of therapeutic hyperthermia in the treatment of infection. A number of studies have been performed in the pre-antibiotic era, enrolling patients with neurosyphilis and gonococcal infections, with reported cure rates at around 60%–80%. We have outlined the potential molecular and immunological mechanisms explaining the possible beneficial effects of therapeutic hyperthermia. For some pathogens increased temperature exerts a direct negative effect on virulence; however, it is presumed that temperature driven activation of the immune system is probably the most important factor affecting microbial viability. Lastly, we performed a review of modern-era studies where modulation of body temperature has been used as a treatment strategy. In trials of therapeutic hypothermia in patients with infection worse outcomes have been observed in the hypothermia group. Use of antipyretics has not been associated with any improvement in clinical outcomes. In modern-era therapeutic hyperthermia achieved by physical warming has been studied in one pilot trial, and better survival was observed in the hyperthermia group. To conclude, currently there is not enough data to support the use of therapeutic hyperthermia outside clinical trials; however, available studies are in favor of at least a temperature tolerance strategy for non-neurocritical patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.