The paper presents a novel waterflooding technique, coupling cyclic high-pressure water slug injection with an asynchronous injection and production procedure, to address the inefficient development of low-permeability oil reservoir in Shengli Oilfield, a pilot test with 5-spot well pattern. Based on the first-hand data from the pilot test, the reservoir model is established. With an in-depth understanding of the mechanism of the novel waterflooding technique, different simulation schemes are employed to screen the best scheme to finely investigate the historical performance of the pilot test. The production characteristics of the pilot test are both qualitatively and quantitatively investigated. It is found that the novel waterflooding technique can provide pressure support within a short period. And the formation around the injector is significantly activated and deformed. Once passing the short stage of the small elastic deformation, the reservoir immediately goes through the dilation deformation accompanied with the opening of microfractures so that the reservoir properties are significantly improved, which leads to better reservoir performance. With the multicyclic dilation-recompaction geomechanical model, the impact of pressure cyclic evolution on the reservoir properties and performance under the novel waterflooding mode of cyclic high-pressure water slug injection is taken into consideration. The historical data of the pilot test is well matched. In the study, a high-precision simulation scheme for the novel waterflooding technique in low-permeability reservoirs is proposed, which provides significant technical support for further optimization of the pilot test and large-scale application of the novel waterflooding technique.
The successful development of tight oil reservoirs in the U.S. shows the bright future of unconventional reservoirs. Tight oil reservoirs will be the main target of exploration and development in the future, and CO2 huff-n-puff is one of the most important methods to enhance oil recovery factor of tight oil reservoirs in North America. To improve the performance of CO2 huff-n-puff, injection and production parameters need to be optimized through numerical simulation. The phase behavior and microscopic flow mechanism of CO2 huff-n-puff in porous media need to be further investigated. This paper presents a detailed review of phase behavior and microscopic flow mechanism in tight porous media by CO2 huff-n-puff. Phase behavior in tight porous media is different from that in a PVT cylinder since the capillary pressure in tight porous media reduces the bubble point pressure and increases the miscibility pressure and critical temperature. The condensate pressure in tight porous media and nonequilibrium phase behavior need to be further investigated. The microscopic flow mechanism during CO2 huff-n-puff in tight porous media is complicated, and the impact of molecular diffusion, gas-liquid interaction, and fluid-rock interaction on multiphase flow is significant especially in tight porous media. Nuclear magnetic resonance (NMR) and molecular simulation are efficient methods to describe the microscopic flow in tight oil reservoirs, while the NMR is not cost-effective and molecular simulation needs to be improved to better characterize and model the feature of porous media. The improved molecular simulation is still a feasible method to understand the microscopic flow mechanism of CO2 huff-n-puff in tight oil reservoirs in the near future. The microscopic flow model in micropore network based on digital core is worth to be established, and phase behavior needs to be further incorporated into the microscopic flow model of CO2 huff-n-puff in tight porous media.
CO 2 geological sequestration in a depleted shale gas reservoir is a promising method to address the global energy crisis as well as to reduce greenhouse gas emissions. Though improvements have been achieved by many researchers, the carbon sequestration and enhanced gas recovery (CS-EGR) in shale formations is still in a preliminary stage. The current research status of CO 2 sequestration in shale gas reservoirs with potential EGR is systematically and critically addressed in the paper. In addition, some original findings are also presented in this paper. This paper will shed light on the technology development that addresses the dual problem of energy crisis and environmental degradation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.