In eukaryotes, most integral membrane proteins are synthesized, integrated into the membrane, and folded properly in the endoplasmic reticulum (ER). We screened the mutants affecting rhabdomeric expression of rhodopsin 1 (Rh1) in the Drosophila photoreceptors and found that dPob/EMC3, EMC1, and EMC8/9, Drosophila homologs of subunits of ER membrane protein complex (EMC), are essential for stabilization of immature Rh1 in an earlier step than that at which another Rh1-specific chaperone (NinaA) acts. dPob/EMC3 localizes to the ER and associates with EMC1 and calnexin. Moreover, EMC is required for the stable expression of other multi-pass transmembrane proteins such as minor rhodopsins Rh3 and Rh4, transient receptor potential, and Na+K+-ATPase, but not for a secreted protein or type I single-pass transmembrane proteins. Furthermore, we found that dPob/EMC3 deficiency induces rhabdomere degeneration in a light-independent manner. These results collectively indicate that EMC is a key factor in the biogenesis of multi-pass transmembrane proteins, including Rh1, and its loss causes retinal degeneration.DOI: http://dx.doi.org/10.7554/eLife.06306.001
Polarized membrane trafficking is essential for the construction and maintenance of multiple plasma membrane domains of cells. Highly polarized Drosophila photoreceptors are an excellent model for studying polarized transport. A single cross-section of Drosophila retina contains many photoreceptors with 3 clearly differentiated plasma membrane domains: a rhabdomere, stalk, and basolateral membrane. Genome-wide high-throughput ethyl methanesulfonate screening followed by precise immunohistochemical analysis identified a mutant with a rare phenotype characterized by a loss of 2 apical transport pathways with normal basolateral transport. Rapid gene identification using whole-genome resequencing and single nucleotide polymorphism mapping identified a nonsense mutation of Rab6 responsible for the apical-specific transport deficiency. Detailed analysis of the trafficking of a major rhabdomere protein Rh1 using blue light-induced chromophore supply identified Rab6 as essential for Rh1 to exit the Golgi units. Rab6 is mostly distributed from the trans-Golgi network to a Golgi-associated Rab11-positive compartment that likely recycles endosomes or transport vesicles going to recycling endosomes. Furthermore, the Rab6 effector, Rich, is required for Rab6 recruitment in the trans-Golgi network. Moreover, a Rich null mutation phenocopies the Rab6 null mutant, indicating that Rich functions as a guanine nucleotide exchange factor for Rab6. The results collectively indicate that Rab6 and Rich are essential for the trans-Golgi network–recycling endosome transport of cargoes destined for 2 apical domains. However, basolateral cargos are sorted and exported from the trans-Golgi network in a Rab6-independent manner.
SUMMARYSorting of integral membrane proteins plays crucial roles in establishing and maintaining the polarized structures of epithelial cells and neurons. However, little is known about the sorting mechanisms of newly synthesized membrane proteins at the trans-Golgi network (TGN). To identify which genes are essential for these sorting mechanisms, we screened mutants in which the transport of Rhodopsin 1 (Rh1), an apical integral membrane protein in Drosophila photoreceptors, was affected. We found that deficiencies in glycosylphosphatidylinositol (GPI) synthesis and attachment processes cause loss of the apical transport of Rh1 from the TGN and mis-sorting to the endolysosomal system. Moreover, Na + K + -ATPase, a basolateral membrane protein, and Crumbs (Crb), a stalk membrane protein, were mistransported to the apical rhabdomeric microvilli in GPI-deficient photoreceptors. These results indicate that polarized sorting of integral membrane proteins at the TGN requires the synthesis and anchoring of GPI-anchored proteins. Little is known about the cellular biological consequences of GPI deficiency in animals in vivo. Our results provide new insights into the importance of GPI synthesis and aid the understanding of pathologies involving GPI deficiency.
Studies in Xenopus have shown that the C-terminal domain phosphatase-like domain (CPD) phosphatase Dullard is essential for proper neural development via inhibition of bone morphogenetic protein (BMP) signaling receptors. In contrast, the orthologous budding yeast Nem1 and human Dullard have been shown to dephosphorylate the phosphatidate phosphatases yeast Smp2 ⁄ Pah1 and human Lipin, and the relationship between phospholipid metabolism and BMP signaling remain unsolved. Here we report evidence that the Dullard-Lipin phosphatase cascade in Drosophila can regulate BMP signaling, most likely by affecting the function of the nuclear envelope. Manipulating expression levels of either the Drosophila Dullard gene, d-dullard (ddd) or the Lipin gene, DmLpin affected wing vein formation in a manner suggesting a negative effect on BMP signaling. Furthermore, both genes exhibit genetic interaction with BMP signaling pathway components, and can affect the levels of phosphorylated-Mothers against dpp (p-Mad). Although changing ddd expression levels did not have an obvious effect on overall nuclear envelope morphology as has been shown for yeast nem1, the nuclear import machinery components Importin-b and RanGAP were mislocalized and membrane lipid staining was altered in cells overexpressing ddd. Considering the known genetic interaction between Nup84 complex nucleoporins and nem1 in yeast, and the recently reported requirement for components from the orthologous nucleoporin complex in the nuclear translocation of Drosophila Mad (Chen & Xu 2010), it is likely that the role of Drosophila Dullard in regulating membrane lipid homeostasis is conserved and is critical for normal BMP signaling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.