Background
Adverse events in COVID-19 are difficult to predict. Risk stratification is encumbered by the need to protect healthcare workers. We hypothesize that AI can help identify subtle signs of myocardial involvement in the 12-lead electrocardiogram (ECG), which could help predict complications.
Objective
Use intake ECGs from COVID-19 patients to train AI models to predict risk of mortality or major adverse cardiovascular events (MACE).
Methods
We studied intake ECGs from 1448 COVID-19 patients (60.5% male, 63.4±16.9 years). Records were labeled by mortality (death vs. discharge) or MACE (no events vs. arrhythmic, heart failure [HF], or thromboembolic [TE] events), then used to train AI models; these were compared to conventional regression models developed using demographic and comorbidity data.
Results
245 (17.7%) patients died (67.3% male, 74.5±14.4 years); 352 (24.4%) experienced at least one MACE (119 arrhythmic; 107 HF; 130 TE). AI models predicted mortality and MACE with area under the curve (AUC) values of 0.60±0.05 and 0.55±0.07, respectively; these were comparable to AUC values for conventional models (0.73±0.07 and 0.65±0.10). There were no prominent temporal trends in mortality rate or MACE incidence in our cohort; holdout testing with data from after a cutoff date (June 9, 2020) did not degrade model performance.
Conclusion
Using intake ECGs alone, our AI models had limited ability to predict hospitalized COVID-19 patients’ risk of mortality or MACE. Our models’ accuracy was comparable to that of conventional models built using more in-depth information, but translation to clinical use would require higher sensitivity and positive predictive value. In the future, we hope that mixed-input AI models utilizing both ECG and clinical data may be developed to enhance predictive accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.