Background:
Optical coherence tomography (OCT) is considered as a sensitive and noninvasive tool to evaluate the macular lesions. In patients with diabetes mellitus (DM), the existence of diabetic macular edema (DME) can cause significant vision impairment and further intravitreal injection (IVI) of anti–vascular endothelial growth factor (VEGF) is needed. However, the increasing number of DM patients makes it a big burden for clinicians to manually determine whether DME exists in the OCT images. The artificial intelligence (AI) now enormously applied to many medical territories may help reduce the burden on clinicians.
Methods:
We selected DME patients receiving IVI of anti-VEGF or corticosteroid at Taipei Veterans General Hospital in 2017. All macular cross-sectional scan OCT images were collected retrospectively from the eyes of these patients from January 2008 to July 2018. We further established AI models based on convolutional neural network architecture to determine whether the DM patients have DME by OCT images.
Results:
Based on the convolutional neural networks, InceptionV3 and VGG16, our AI system achieved a high DME diagnostic accuracy of 93.09% and 92.82%, respectively. The sensitivity of the VGG16 and InceptionV3 models was 96.48% and 95.15%., respectively. The specificity was corresponding to 86.67% and 89.63% for VGG16 and InceptionV3, respectively. We further developed an OCT-driven platform based on these AI models.
Conclusion:
We successfully set up AI models to provide an accurate diagnosis of DME by OCT images. These models may assist clinicians in screening DME in DM patients in the future.
Recent imaging studies of large datasets suggested that psychiatric disorders have common biological substrates. This study aimed to identify all the common neural substrates with connectomic abnormalities across four major psychiatric disorders by using the data-driven connectome-wide association method of multivariate distance matrix regression (MDMR). This study analyzed a resting functional magnetic resonance imaging dataset of 100 patients with schizophrenia, 100 patients with bipolar I disorder, 100 patients with bipolar II disorder, 100 patients with major depressive disorder, and 100 healthy controls. We calculated a voxel-wise 4330 × 4330 matrix of whole-brain functional connectivity (FC) with 8-mm isotropic resolution for each participant and then performed MDMR to identify structures where the overall multivariate pattern of FC was significantly different between each patient group and the HC group. A conjunction analysis was performed to identify common neural regions with FC abnormalities across these four psychiatric disorders. The conjunction of the MDMR maps revealed that the four groups of patients shared connectomic abnormalities in distributed cortical and subcortical structures, which included bilateral thalamus, cerebellum, frontal pole, supramarginal gyrus, postcentral gyrus, lingual gyrus, lateral occipital cortex, and parahippocampus. The follow-up analysis based on pair-wise FC of these regions demonstrated that these psychiatric disorders also shared similar patterns of FC abnormalities characterized by sensory/subcortical hyperconnectivity, association/subcortical hypoconnectivity, and sensory/association hyperconnectivity. These findings suggest that major psychiatric disorders share common connectomic abnormalities in distributed cortical and subcortical regions and provide crucial support for the common network hypothesis of major psychiatric disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.