Transmissible spongiform encephalopathies (TSEs) are epidemic neurodegenerative diseases caused by prion proteins; in particular, they are induced by misfolded prion proteins (PrPSc). PrPSc tend to aggregate into insoluble amyloid prion fibrils (fPrPWT), resulting in apoptosis of neuron cells and sequential neurodegeneration. Previous studies indicate that microglia cells play an important role in the innate immune system, and that these cells have good neuroprotection and delay the onset of TSEs. However, microglia can be a double-sided blade. For example, both Cu2+ and Mn2+ can induce microglia activation and secrete many inflammatory cytokines that are fatal to neuron cells. Unfortunately, PrP have cation binding sites at the N-terminus. When PrPSc accumulate during microglial phagocytosis, microglia may change the phenotype to secrete pro-inflammation cytokines, which increases the severity of the disease. Some studies have revealed an increase in the concentration of Mn2+ in the brains of patients. In this study, we treated microglia with fPrPWT and cations and determined IκBα and IL-1β expression by Western blotting and quantitative polymerase chain reaction. The results showed that Mn–fPrPWT decreased IκBα levels and dramatically increased IL-1β mRNA expression. In addition, competing binding between Cu2+ and Mn2+ can decrease the effect of Mn–fPrPWT on IκBα and IL-1β. The effects of divalent cations and fPrPWT in microglia inflammation are also discussed.
Ten new lantabetulic acid (1) derivatives 2-11 were synthesized and their cytotoxicities against human prostate cancer cells were evaluated. PC3 cells treated with 10 μM 8 exhibited the most potent G1 phase arrest. In addition, 10 μM 8 markedly decreased the levels of cyclin E and cdk2 and caused an increase in the p21 and p27 levels, while 20 μM 8 mainly led to cell death through the apoptotic pathway, which correlated with an increase in reactive oxygen species levels, decreased expression levels of Bcl-2 and caspase-8, the induction of mitochondrial changes, and decreased levels of cytochrome c in mitochondria. The dual action of 8 could provide a new approach for the development of chemotherapeutic drugs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.