Electroluminescence efficiencies and stabilities of quasi-two-dimensional halide perovskites are restricted by the formation of multiple-quantum-well structures with broad and uncontrollable phase distributions. Here, we report a ligand design strategy to substantially suppress diffusion-limited phase disproportionation, thereby enabling better phase control. We demonstrate that extending the π-conjugation length and increasing the cross-sectional area of the ligand enables perovskite thin films with dramatically suppressed ion transport, narrowed phase distributions, reduced defect densities, and enhanced radiative recombination efficiencies. Consequently, we achieved efficient and stable deep-red light-emitting diodes with a peak external quantum efficiency of 26.3% (average 22.9% among 70 devices and cross-checked) and a half-life of ~220 and 2.8 h under a constant current density of 0.1 and 12 mA/cm2, respectively. Our devices also exhibit wide wavelength tunability and improved spectral and phase stability compared with existing perovskite light-emitting diodes. These discoveries provide critical insights into the molecular design and crystallization kinetics of low-dimensional perovskite semiconductors for light-emitting devices.
In this work, we chose four organic cations-butylammonium (BA), phenylethylammonium (PEA), thiophenylethylammonium (1T), and biphenylethylammonium (2P)-to study the Anionic diffusion strongly impacts the stability of halide perovskite materials, but it is still not well understood. Here, a quantitative investigation of in-plane thermally driven anionic inter-diffusion in a series of novel 2D and quasi-2D halide perovskites lateral heterostructures is reported. The calculated diffusion coefficients (D) reveal the inhibition of Br-I inter-diffusion with bulky π-conjugated organic cations compared with short-chain aliphatic organic cations. Furthermore, halide diffusion is found to be faster in quasi-2D (n > 1) than 2D perovskites (n = 1). The increment becomes less apparent as the "n" number increases, akin to the quantum confinement effect observed for band gaps. These trends are rationalized by molecular dynamics simulations of free energy barriers for halide diffusion that reveal mechanisms for suppressing diffusion. This work provides important fundamental insights on the anionic migration and diffusion process in halide perovskite materials. Rising Stars
Force-field development has undergone a revolution in the past decade with the proliferation of quantum chemistry based parametrizations and the introduction of machine learning approximations of the atomistic potential energy surface. Nevertheless, transferable force fields with broad coverage of organic chemical space remain necessary for applications in materials and chemical discovery where throughput, consistency, and computational cost are paramount. Here, we introduce a force-field development framework called Topology Automated Force-Field Interactions (TAFFI) for developing transferable force fields of varying complexity against an extensible database of quantum chemistry calculations. TAFFI formalizes the concept of atom typing and makes it the basis for generating systematic training data that maintains a one-to-one correspondence with force-field terms. This feature makes TAFFI arbitrarily extensible to new chemistries while maintaining internal consistency and transferability. As a demonstration of TAFFI, we have developed a fixed-charge force-field, TAFFI-gen, from scratch that includes coverage for common organic functional groups that is comparable to established transferable force fields. The performance of TAFFI-gen was benchmarked against OPLS and GAFF for reproducing several experimental properties of 87 organic liquids. The consistent performance of these force fields, despite their distinct origins, validates the TAFFI framework while also providing evidence of the representability limitations of fixed-charge force fields.
Molecular dynamics simulations were conducted to study the equilibrium and transport properties of methane/water twophase systems with sodium dodecyl sulfate (SDS) at the interface. In particular, the properties were determined at different SDS packing fractions, 0%, 25%, 50%, 75%, and 100%. The calculated interfacial tension, determined from the difference of normal and transverse components of the pressure tensor, was found to decrease with increasing SDS concentration at the methane/water interface, whereas the equilibrium partition of methane in the gas and water phases remained nearly unchanged. Both of these results were in quantitative agreement with experimental observations. The presence of SDS at the interface increased the free energy barrier of methane transport through the interface. Therefore, it was found that the rate of methane transport across the interface slowed down with increasing SDS concentrations. In other words, the thermodynamic driving force was unchanged, but the kinetic barrier was enhanced from 9.07 kJ/mol at 0% SDS to 14.17 kJ/mol at 100% SDS coverage at 260 K for the transport of methane to the aqueous phase. Our simulation results have a significant implication on the promoting effect of methane hydrate formation with the presence of SDS.
Perovskite solar cells (PSCs) have delivered a power conversion efficiency (PCE) of more than 25% and incorporating polymers as hole‐transporting layers (HTLs) can further enhance the stability of devices toward the goal of commercialization. Among the various polymeric hole‐transporting materials, poly(triaryl amine) (PTAA) is one of the promising HTL candidates with good stability; however, the hydrophobicity of PTAA causes problematic interfacial contact with the perovskite, limiting the device performance. Using molecular side‐chain engineering, a uniform 2D perovskite interlayer with conjugated ligands, between 3D perovskites and PTAA is successfully constructed. Further, employing conjugated ligands as cohesive elements, perovskite/PTAA interfacial adhesion is significantly improved. As a result, the thin and lateral extended 2D/3D heterostructure enables as‐fabricated PTAA‐based PSCs to achieve a PCE of 23.7%, improved from the 18% of reference devices. Owing to the increased ion‐migration energy barrier and conformal 2D coating, unencapsulated devices with the new ligands exhibit both superior thermal stability under 60 °C heating and moisture stability in ambient conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.