The World Health Organization considered the widespread of COVID-19 over the world as a pandemic. There is still a lack of understanding of its origin, transmission, and treatment methods. Understanding the influencing factors of the COVID-19 can help mitigate its spread, but little research on the spatial factors has been conducted. Therefore, this study explores the effects of urban geometry and socio-demographic factors on the COVID-19 cases in Hong Kong. For each patient, the places they visited during the incubation period before going to hospital were identified, and matched with corresponding attributes of urban geometry (i.e., building geometry, road network, greenspace) and socio-demographic factors (i.e., demographic, educational, economic, household and housing characteristics) based on the coordinates. The local cases were then compared with the imported cases using the stepwise logistic regression, the logistic regression with case-control of time, and the least absolute shrinkage and selection operator regression to identify factors influencing local disease transmission. Results show that the building geometry, road network and certain socio-economic characteristics are significantly associated with COVID-19 cases. In addition, the results indicate that urban geometry is playing a more important role than the socio-demographic characteristics in affecting the COVID-19 incidences. These findings provide a useful reference to the government and the general public as to the spatial vulnerability of the COVID-19 transmission and to take appropriate preventive measures in high-risk areas.
Understanding the relationship between the built environment and the risk of COVID-19 transmission is essential to respond to the pandemic. This study explores the relationship between the built environment and COVID-19 risk using the confirmed cases data collected in Hong Kong. Using the information on the residential buildings and places visited for each case from the dataset, we assess the risk of COVID-19 and explore their geographic patterns at the level of Tertiary Planning Unit (TPU) based on incidence rate (R1) and venue density (R2). We then investigate the associations between several built-environment variables (e.g., nodal accessibility and green space density) and COVID-19 risk using global Poisson regression (GPR) and geographically weighted Poisson regression (GWPR) models. The results indicate that COVID-19 risk tends to be concentrated in particular areas of Hong Kong. Using the incidence rate as an indicator to assess COVID-19 risk may underestimate the risk of COVID-19 transmission in some suburban areas. The GPR and GWPR models suggest a close and spatially heterogeneous relationship between the selected built-environment variables and the risk of COVID-19 transmission. The study provides useful insights that support policymakers in responding to the COVID-19 pandemic and future epidemics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.