Physics-based differentiable rendering---which focuses on estimating derivatives of radiometric detector responses with respect to arbitrary scene parameters---has a diverse array of applications from solving analysis-by-synthesis problems to training machine-learning pipelines incorporating forward-rendering processes. Unfortunately, existing general-purpose differentiable rendering techniques lack either the generality to handle volumetric light transport or the flexibility to devise Monte Carlo estimators capable of handling complex geometries and light transport effects.
In this paper, we bridge this gap by showing how generalized path integrals can be differentiated with respect to arbitrary scene parameters. Specifically, we establish the mathematical formulation of generalized differential path integrals that capture both interfacial and volumetric light transport. Our formulation allows the development of advanced differentiable rendering algorithms capable of efficiently handling challenging geometric discontinuities and light transport phenomena such as volumetric caustics.
We validate our method by comparing our derivative estimates to those generated using the finite differences. Further, to demonstrate the effectiveness of our technique, we compare both differentiable rendering and inverse rendering performance with state-of-the-art methods.
Pixel reconstruction filters play an important role in physics-based rendering and have been thoroughly studied. In physics-based differentiable rendering, however, the proper treatment of pixel filters remains largely under-explored. We present a new technique to efficiently differentiate pixel reconstruction filters based on the path-space formulation. Specifically, we formulate the pixel
boundary
integral that models discontinuities in pixel filters and introduce new antithetic sampling methods that support differentiable path sampling methods, such as adjoint particle tracing and bidirectional path tracing. We demonstrate both the need and efficacy of antithetic sampling when estimating this integral, and we evaluate its effectiveness across several differentiable- and inverse-rendering settings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.