Targeted mutagenesis in model organisms is key for gene functional annotation and biomedical research. Despite technological advances in gene editing by the CRISPR-Cas9 systems, rapid and efficient introduction of site-directed mutations remains a challenge in large animal models. Here, we developed a robust and flexible insertional mutagenesis strategy, homology-independent targeted trapping (HIT-trapping), which is generic and can efficiently target-trap an endogenous gene of interest independent of homology arm and embryonic stem cells. Further optimization and equipping the HIT-trap donor with a site-specific DNA inversion mechanism enabled one-step generation of reversible and conditional alleles in a single experiment. As a proof of concept, we successfully created mutant alleles for 21 disease-related genes in primary porcine fibroblasts with an average knock-in frequency of 53.2%, a great improvement over previous approaches. The versatile HIT-trapping strategy presented here is expected to simplify the targeted generation of mutant alleles and facilitate large-scale mutagenesis in large mammals such as pigs.
Embryonic stem cell (ES cell)‐based rat knockout technology, although successfully developed in 2010, has seen very limited usage to date due to low targeting efficiency and a lack of optimized procedures. In this study, we performed gene targeting in ES cells from the Sprague–Dawley (SD) and the Fischer 344 (F344) rat strains using an optimized procedure and the self‐excising neomycin (neo)‐positive selection cassette ACN to successfully generate Leptin and Trp53 knockout rats that did not carry the selection gene. These results demonstrate that our simplified targeting strategy using ACN provides an efficient approach to knock out many other rat genes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.