Thermoelectric materials have a large Peltier effect, making them attractive for solid-state cooling applications. Bismuth telluride (Bi2Te3)–based alloys have remained the state-of-the-art room-temperature materials for many decades. However, cost partially limited wider use of thermoelectric cooling devices because of the large amounts of expensive tellurium required. We report n-type magnesium bismuthide (Mg3Bi2)–based materials with a peak figure of merit (ZT) of ~0.9 at 350 kelvin, which is comparable to the commercial bismuth telluride selenide (Bi2Te3–xSex) but much cheaper. A cooling device made of our material and p-type bismuth antimony telluride (Bi0.5Sb1.5Te3) has produced a large temperature difference of ~91 kelvin at the hot-side temperature of 350 kelvin. n-type Mg3Bi2-based materials are promising for thermoelectric cooling applications.
Achieving higher carrier mobility plays a pivotal role for obtaining potentially high thermoelectric performance. In principle, the carrier mobility is governed by the band structure as well as by the carrier scattering mechanism. Here, we demonstrate that by manipulating the carrier scattering mechanism in n-type MgSb-based materials, a substantial improvement in carrier mobility, and hence the power factor, can be achieved. In this work, Fe, Co, Hf, and Ta are doped on the Mg site of MgSbBiTe, where the ionized impurity scattering crosses over to mixed ionized impurity and acoustic phonon scattering. A significant improvement in Hall mobility from ∼16 to ∼81 cm⋅V⋅s is obtained, thus leading to a notably enhanced power factor of ∼13 μW⋅cm⋅K from ∼5 μW⋅cm⋅K A simultaneous reduction in thermal conductivity is also achieved. Collectively, a figure of merit () of ∼1.7 is obtained at 773 K in MgCoSbBiTe The concept of manipulating the carrier scattering mechanism to improve the mobility should also be applicable to other material systems.
Thermoelectric materials are capable of converting waste heat into electricity. The dimensionless figure-of-merit (ZT), as the critical measure for the material’s thermoelectric performance, plays a decisive role in the energy conversion efficiency. Half-Heusler materials, as one of the most promising candidates for thermoelectric power generation, have relatively low ZTs compared to other material systems. Here we report the discovery of p-type ZrCoBi-based half-Heuslers with a record-high ZT of ∼1.42 at 973 K and a high thermoelectric conversion efficiency of ∼9% at the temperature difference of ∼500 K. Such an outstanding thermoelectric performance originates from its unique band structure offering a high band degeneracy (Nv) of 10 in conjunction with a low thermal conductivity benefiting from the low mean sound velocity (vm ∼2800 m s−1). Our work demonstrates that ZrCoBi-based half-Heuslers are promising candidates for high-temperature thermoelectric power generation.
Discovery of thermoelectric materials has long been realized by the Edisonian trial and error approach. However, recent progress in theoretical calculations, including the ability to predict structures of unknown phases along with their thermodynamic stability and functional properties, has enabled the so-called inverse design approach. Compared to the traditional materials discovery, the inverse design approach has the potential to substantially reduce the experimental efforts needed to identify promising compounds with target functionalities. By adopting this approach, here we have discovered several unreported half-Heusler compounds. Among them, the p-type TaFeSb-based half-Heusler demonstrates a record high ZT of ~1.52 at 973 K. Additionally, an ultrahigh average ZT of ~0.93 between 300 and 973 K is achieved. Such an extraordinary thermoelectric performance is further verified by the heat-to-electricity conversion efficiency measurement and a high efficiency of ~11.4% is obtained. Our work demonstrates that the TaFeSb-based half-Heuslers are highly promising for thermoelectric power generation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.