Due to the high mutation and recombination rates of the influenza virus, current clinically licensed influenza vaccines and anti-influenza drugs provide limited protection against the emerging influenza virus epidemic. Therefore, universal influenza vaccines with high efficacy are urgently needed to ensure human safety and health. Passive immunization of influenza broadly neutralizing antibodies may become an ideal option for controlling influenza infection. CR9114 isolated from the peripheral blood mononuclear cells of healthy donors is a broadly neutralizing monoclonal antibody that targets different types of influenza viruses. As the adenovirus vector is one of the most promising delivery vehicles, we employed the chimpanzee adenoviral vector, AdC68, to express CR9114 as a universal anti-influenza vaccine, termed AdC68-CR9114, and evaluated its antibody expression and its broad spectrum of prophylactic and therapeutic effects in animal models. Based on our findings, AdC68-CR9114-infected cell expressed the broadly neutralizing antibody at a high level in vitro and in vivo, exhibited biological functions, and protected mice from different types of influenza virus infection at different time points. The findings from this study shed light on a new strategy for controlling and preventing influenza infection.
CD19 chimeric antigen receptor (CAR)-T cells have been used to treat patients with refractory chronic lymphocytic leukemia (CLL). However, approximately 50% of patients do not respond to this therapy. To improve the clinical outcome of these patients, it is necessary to develop strategies with other optimal targets to enable secondary or combinational CAR-T cell therapy. By screening a panel of surface antigens, we found that CD32b (FcγRIIb) was homogeneously expressed at high site density on tumor cells from CLL patients. We then developed a second-generation CAR construct targeting CD32b, and T cells transduced with the CD32 CAR efficiently eliminated the CD32b+ Raji leukemic cell line in vitro and in a mouse xenograft model. Furthermore, CD32b CAR-T cells showed cytotoxicity against primary human CLL cells that were cultured in vitro or transplanted into immunodeficient mice. The efficacy of CD32b CAR T cells correlated with the CD32b density on CLL cells. CD32b is not significantly expressed by non-B hematopoietic cells. Our study thus identifies CD32b as a potential target of CAR-T cell therapy for CLL, although further modification of the CAR construct with a safety mechanism may be required to minimize off-target toxicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.