Infilling fractured rock masses are widely distributed in the deeply buried oil reservoirs and surrounding rocks of mine caves. The internal filling material has a great influence on the mechanical properties and seepage characteristics of fractured rock mass. In this paper, through theories and experiments, the mechanism of permeability changes of infilling fractured rock under a coupling condition is studied. In terms of theory, the fracture compaction effect coefficient δ is added to the classical matchstick model, and the volume strain principle is used to propose a permeability model for fractured rock. Furthermore, based on the Hertz contact theory, mineral particles are generalized into rigid spheres, and the mechanism of crack development between mineral particles under seepage pressure is analyzed. In terms of experiment, a true triaxial seepage test was carried out on rock-like specimens to obtain the change law of the permeability characteristics of fractured rock. The test results are largely consistent with the theoretical calculation results of the theoretical model, which verifies the applicability of the model proposed in this paper. After the loading failure of the specimen, the internal filling material was taken out and analyzed, and by observing the distribution of cracks on the surface, it is verified that the seepage pressure promotes the development of cracks in the filling fracture.
Columnar jointed rock mass (CJRM) is a highly symmetrical natural fractured structure. As the rock mass of the dam foundation of the Baihetan Hydropower Station, the study of its permeability anisotropy is of great significance to engineering safety. Based on the theory of composite mechanics and Goodman’s joint superposition principle, the constitutive model of joints of CJRM is derived according to the Quadrangular prism, the Pentagonal prism and the Hexagonal prism model; combined with Singh’s research results on intermittent joint stress concentration, considering column deflection angles, the joint constitutive model of CJRM in three-dimensional space is established. For the CJRM in the Baihetan dam site area, the Quadrangular prism, the Pentagonal prism and the Hexagonal prism constitutive models were used to calculate the permeability coefficients of CJRM under different deflection angles. The permeability anisotropy characteristics of the three models were compared and verified by numerical simulation results. The results show that the calculation results of the Pentagonal prism model are in good agreement with the numerical simulation results. The variation of permeability coefficient under different confining pressures is compared, and the relationship between permeability coefficient and confining pressure is obtained, which accords with the negative exponential function and conforms to the general rule of joint seepage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.