A novel memristive chaotic system with tiny perturbation is proposed in this Letter. Particularly, by adjusting tiny perturbation properly, this system can generate a novel compound chaotic attractor (including one stable chaotic attractor and one periodic-2 attractor). Furthermore, transient mixed-mode oscillations (MMOs) and attractor inversion behaviour are also observed. The numerically observed transient MMOs are demonstrated by Multisim experiment. As a result, the simulation results verify the feasibility and effectiveness of the tiny perturbation method.
Purpose
This paper aims to introduce a novel 4D hyperchaotic fractional-order system which can produce one-to-four-wing hyperchaotic attractors. In the study of chaotic systems with variable-wing attractors, although some chaotic systems can generate one-to-four-wing attractors, none of them are hyperchaotic attractors, which is incomplete for the dynamic characteristics of chaotic systems.
Design/methodology/approach
A novel 4D fractional-order hyperchaotic system is proposed based on the classical three-dimensional Lü system. The complex and abundant dynamic behaviors of the fractional-order system are analyzed by phase diagrams, bifurcation diagrams and the corresponding Lyapunov exponents. In addition, SE and C0 algorithms are used to analyze the complexity of the fractional-order system. Then, the influence of order q on the system is also investigated. Finally, the circuit is implemented using physical components.
Findings
The most particular interest is that the system can generate one-to-four-wing hyperchaotic attractors with only one parameter variation. Then, the hardware circuit experimental results tally with the numerical simulations, which proves the validity and feasibility of the fractional-order hyperchaotic system. Besides, under different initial conditions, coexisting attractors can be obtained by changing the parameter d or the order q. Then, the complexity analysis of the system shows that the fractional-order chaotic system has higher complexity than the corresponding integer-order chaotic system.
Originality/value
The circuit structure of the fractional-order hyperchaotic system is simple and easy to implement, and one-to-four-wing hyperchaotic attractors can be observed in the circuit. To the best of the knowledge, this unique phenomenon has not been reported in any literature. It is of great reference value to analysis and circuit realization of fractional-order chaotic systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.