Key performance indicators (KPI)-related process monitoring has been of great significance to ensure product quality and economic benefits for batch processes. Considering that different phases exhibit different characteristics, one of the key issues is how to partition the whole batch process into different phases and characterize them separately by multiple phase models. In order to model and monitor batch processes more accurately and efficiently, a novel canonical correlation analysis (CCA) strategy is proposed in this paper. The phase partition algorithm is designed based on the joint canonical variable matrix (JCVM). Different from previous methods, it considers the time sequence of operation phases and can distinguish the phase switches from dynamics anomalies. Using this algorithm, phases are separated in order from a KPI-related perspective, revealing high correlation among variables. After phase partition, a novel multi-phase local neighbourhood standardization CAA (MPLNSCCA) method focusing on KPI is set up for online monitoring, which could further address the misclassification problems. The advantages of the proposed method are illustrated by two case studies, a penicillin simulation platform and an industrial application of Escherichia coli fermentation, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.